
ISSN-2319-2119 

 RESEARCH ARTICLE

 

                                          Shamila Khalid  et al, The Experiment,2017.,Vol 39(4),2345-2353 

 

 

 

 

 

 

www.experimentjournal.com                                                                       2345 

Flow of MHD Thermal Stagnation Point Flow of   Micropolar 
Fluids due to Permeable Stretching Surface 

Abstract: 

This article examine the flow of micropolar fluids toward a porous stretching surface. The fluids is electrically conducting and 
the temperature is due to convection, radiation and joule’s heating. A magnetic field in the normal direction is applied for the 
stagnation point flow. The governing model of the problem has been converted into ordinary differential form with the use of 
similarity functions. The final mathematical model is treated by coding in Mathematica. Several computation have been made 
for suitable ranges of the pertinent parameter that influence of flow pattern internal micromotion and thermal behaviour of a 
problem. The results have been presented in the form of plots for heat function of micromotion and speed of the flow. 

Introduction: 

Eringen [1,2]firstly formulated the theory of micropolar fluids and derived the constitutive laws for the fluids with 
microstructure. This theory provided a mathematical model for the non-Newtonian behavior which could be observed in 
certain liquids such as polymers, colloidal suspensions, animal blood, liquids crystals etc. A thorough review of the subject and 
application of micropolar fluid mechanics was provided by Ariman et al. [3,4] and Eringen [5]. Subhadra et al. [6] studied the 
heat transfer in the flow of a micropolar fluid past a curved surface with suction and injection using Van Dyke’s singular 
perturbation technique. Muhammad Ashraf et al. [7] and Rashidi et al. [8] examined the steady, incompressible and laminar 
flow of micropolar fluids inside an infinite channel. The governing equations were reduced to non-linear ordinary differential 
equations by using similarity transformation. These equations were then solved using numerical procedures which included 
SOR method. Kelson and Farrell [9]analyzed self-similar boundary layer flow of a micropolar fluid in a porous channel where 
the flow was driven by uniform mass transfer through the channel walls. Ziabakhsh and Domairry [10], Joneidiet al. [11] also 
discussed the micropolar fluid in a porous channel with stationary walls by HAM or OHAM, respectively. Si et al. [12] firstly 
investigated the flow through a porous channel with expanding or contracting walls by HAM and analyzed the effects of the 
expansion ratio on the velocity and micropolar velocity. Kishore et al. [13] described the incompressible viscous 
hydromagnetic flow in a porous medium in the presence of radiation, variable heat and viscous dissipation and mass diffusion. 
Poornima et al. [14] studied the mathematical solution of a steady no cost convective flow of boundary-layer fluid flow of a 
radiating combined nanofluid to a non-linear boundary moving sheet in presence involving transverse magnet field. Sharma et 
al. [15] investigated the heat transfer due to exponentially shrinking sheet in the existence of the thermal radiation among mass 
suction of the boundary layer flow of a viscous fluid. Seddeek [16] analyzed the effects of radiation and variable viscosity on 
an MHD free convection flow past a semi-infinite flat plate with an aligned magnetic field. Hunegnew [17] studied the MHD 
boundary layer flow and heat transfer over a non-linearly stretching/shrinking sheet. Rajesh [18] investigated chemical reaction 
and radiation effects on the transient MHD free convection flow of dissipative fluid past an infinite vertical porous plate with 
ramped wall temperature. Khan and Sanjayan [19] reported an analytical solution of the viscoelastic boundary layer flow and 
heat transfer over an exponentially stretched sheet considering the viscous dissipation in the heat transfer equation. 
Mathematical Model: 

Consider micropolar fluid flow towards the stagnation point on a porous stretching surface. The fluid is incompressible and 
electrically conducting. The magnetic field of strength Ha is perpendicular to the surface that stretches or shrinks along x-axis. 
The flow is steady and two-dimensional. The horizontal component of velocity varies proportional to a specified distance x. 
The surface temperature is uw  and the free stream velocity u were assumed to vary proportional to the distance x from the 

stagnation point so that uw =ax and u =bx. The temperature in the region exterior to the boundary layer is T . The induced 
magnetic field due to motion of the electrically conducting fluid and the pressure gradient are neglected. The tangential 
temperature is maintained at the prescribed constant value wT . The body couple is absent. Spin vector is ),0,0(

3
   

and Velocity vector is ),( vuVV   
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The boundary layer Governing equations of the problems are:  
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Where ⍴ is density of the liquid, µ is dynamic viscosity, 0B is the strength of the applied magnetic field,  is the thermal 

diffusivity, ߪ is the electrical conductivity, 
p

c is the specific heat capacity at constant pressure, k and γ are additional viscosity 

coefficients for micropolar fluid and j is micro inertia , 

 

The boundary conditions are: 

 
3
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Where c is the proportionality constant of the velocity of the stretching sheet, a is the constant proportional to the free stream 
velocity for away from the sheet and T is the temperature of the ambient fluid. 

Using similarity transformations: 

The velocity components are described in terms of the stream function Ѱ (x, y): 
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Equation of continuity (1) is identically satisfied. 

Substituting the above appropriate relation in equations (2), (3) and (4) we get  
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 The associated boundary conditions are: 
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 is the suction/injection parameter. 

The dimensional less material constants are 

  

 

 

1. Results and Discussion: 
The set of equations (6) to (9) is the highly non-linear and do not lend foe analytical solution. Numerical solution of the 
problem has been sought through Mathematica. In order to compute the effect of the physical parameters, namely 

, , , , ,a r n c rH G R E P and the micropolar parameters 1 2 3, ,d d d  on heat distribution and flow dynamics, computations, 

are made for sufficient ranges for these parameters when  =0 1( 0)d   and 0  , the problem becomes same as the 
Newtonian fluid flow. The plots of the results has been presented to demonstrate the nature of the problem. 
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The velocity f   reduced in magnitude with increase in magnetic field strength as presented in fig 1. The result is 
accordance in physical situation because the Lorentz’s force acts in opposite direction of the fluid. Fig 2 displays the 
velocity f   under the effect of 1d   the velocity increases with 1d . 

Fig.3 demonstrate the velocity increase for suction but decreases for increase in injection. The effect of stretching 
parameter on the velocity is plotted in fig .4 when 1  . It is noticed that the velocity increases with . 

The increase in microrotation parameters 1d  cause increase in microrotation as shown in fig 5. The microrotation increase 
with suction but decreases in injection near the boundary and reverse effect is observed away from the boundary as 
depicted in fig 6. Fig 7 demonstrate the effect of magnetic force in microrotation decreases near the boundary but increases 
in magnitude away from the boundary increase in aH . 

The heat function [ ]   decreases with increase in rP and nR  as shown in fig 8 and fig 9. But the temperature distribution 

with increase in cE and TG as demonstrate respectively fig 10 and fig 11. 

 

 

 

                                             Fig.1: The plot for curves of f   under the effect of Hartmann number aH  
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Fig.2: The plot for curves of f  under the effect of micropolar parameter d1 

 

 

Fig.3: The plot for curves of f  under the effect of suction/ injection parameter A 
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Fig.4: The plot for curves of f  under the effect of wf .                  Fig.5: The plot for curves of f  under the effect of   

 

Fig.6: The plot for curves of microrotation L under the effect of d1 

 

 

 

Fig.7: The plot for curves of L under the effect of suction/ injection parameter A 
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Fig.8: The plot for curves of microrotation L under the effect of Hartmann number aH  

 

Fig.9: The plot for curves of θ under the effect of Prandtl number Pr 

 

Fig.10: The plot for curves of θ under the effect of Radiation parameter Rn 
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Fig.11: The plot for curves of θ under the effect of Eckert number Ec                      Fig.12: The plot for curves of θ under the effect of TG   
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