NEW OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR NEUTRAL TYPE DIFFERENCE EQUATION WITH DISTRIBUTED DEVIATING ARGUMENTS

Abstract

In this paper, we will study the oscillatory properties of the second order half-linear difference equationwith distributed deviating arguments. We obtain several new sufficient conditions for the oscillation of all solutions of this equation. Our results improve and extend some known results in the literature. Examples which dwell upon the importance of our results are also included.

Keywords:-Difference equation, Oscillatory solutions, neutral, deviating arguments.
2000 AMS Mathematics Subject Classification: 39A10, 39A12.

INTRDUCTION

In recent years, there has been an increasing interest in the study of the oscillatory behavior of solutions of difference equations (see, e.g., $[1-19]$ and the references cited therein). In this paper, we are concerned with the oscillatory behavior of solutions of second -order half-linear neutral typedifference equationwith distributed deviating arguments of the form

$$
\begin{equation*}
\Delta\left(a_{n} \psi\left(x_{n}\right)\left|\Delta\left(x_{n}+p_{n} x_{n-\tau}\right)\right|^{\alpha-1} \Delta\left(x_{n}+p_{n} x_{n-\tau}\right)\right)+\sum_{\xi=a}^{b} q(n, \xi) f(x(g(n, \xi)))=0 \tag{1.1}
\end{equation*}
$$

Where τ is nonnegative integers, $\mathrm{N}=\{1,2, \ldots\}, \Delta$ denotes the forward difference operator defined by $\Delta x_{n}=x_{n+1}-x_{n}$. By a solution of equation (1.1) we mean a nontrivial sequence $\left\{x_{n}\right\}$ defined on $N\left(n_{0}\right)$, which satisfying equation (1.1)for all $n \geq n_{0}$. A solution $\left\{x_{n}\right\}$ of equation (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative and nonoscillatory otherwise. Equation(1.1) is called oscillatory if all its solutions are oscillatory. Throughout this paper, we will assume the following hypotheses:

$$
\begin{aligned}
& \left(\mathrm{A}_{1}\right) p_{n} \text { ispositive, } 0 \leq p_{n} \leq p \leq+\infty \text { for } n=0,1,2, \ldots, \text { where } p \text { is a constant. } \\
& \qquad\left(\mathrm{A}_{2}\right) \mathrm{a}_{\mathrm{n}}>0, \psi: \mathrm{R} \rightarrow(0, \infty), n=0,1,2, \ldots \text { such that } \sum_{n=n_{0}}^{\infty} \frac{1}{\left(a_{n} \psi\left(x_{n}\right)\right)^{\frac{1}{\alpha}}}=\infty . \\
& \left(\mathrm{A}_{3}\right) q(n, \xi)>0 \text { on } N\left(n_{0}\right) \times N(a, b) \text { and } g: N\left(n_{0}\right) \times N(a, b) \rightarrow N \text { satisfies } n \geq g(n, \xi) \text { for } \xi \\
& \quad \in N(a, b) \text { and } \lim _{n \rightarrow \infty} \min g(n, \xi)=\infty . \\
& \left(\mathrm{A}_{4}\right) f \in C(R, R) \text { such that } x f(x)>0 \text { for } x \neq 0 \operatorname{and} f(u) / u^{\alpha} \geq K>0 .
\end{aligned}
$$

The paper is organized as follows. In Section 2, we will state and prove the main oscillation theorems and in Section 3, we provide some examples to illustrate the main results.

MAIN RESULTS

In this section, we establish some new oscillation criteria for the equation (1.1). We beginwith some useful lemmas, which will be used later.

Lemma 2.1.Let $\left\{x_{n}\right\}$ be a nonoscillatory solution of equation (1.1). Then there exists a $n \geq n_{0}$ such that

EXPERIMENT

international journal or science and technology

$$
\begin{equation*}
z_{n} \geq 0, \Delta z_{n} \geq 0 \text { and } \Delta\left(a_{n} \psi\left(x_{n}\right)\left|\Delta z_{n}\right|^{\alpha-1} \Delta z_{n}\right) \leq 0 \text { forn } \geq n_{0} \tag{2.1}
\end{equation*}
$$

proof. Let $\left\{x_{n}\right\}$ is eventually positive solution of equation(1.1), we may assume that $x_{n}>0, x_{n-\tau}>0$, and $x(g(n, \xi))>0$ for $n \geq n_{0}, \xi \in(a, b)$. Set $z_{n}=x_{n}+p_{n} x_{n-\tau}$. By, assumption $\left(A_{1}\right)$, we have $z_{n}>0$, and from equation(1.1), we get

$$
\begin{equation*}
\Delta\left(a_{n} \psi\left(x_{n}\right)\left|\Delta z_{n}\right|^{\alpha-1} \Delta z_{n}\right)=-\sum_{\xi=a}^{b} q(n, \xi) f(x(g(n, \xi))) \leq 0 \tag{2.2}
\end{equation*}
$$

Therefore, $\left\{a_{n} \psi\left(x_{n}\right)\left|\Delta z_{n}\right|^{\alpha-1} \Delta z_{n}\right\}$ is non-increasing sequence. Now we have two possible cases for Δz_{n} either $\Delta z_{n}<0$ eventually or $\Delta z_{n}>0$ eventually. Suppose that $\Delta z_{n}<0$ for $n \geq n_{0}$. Then from (2.2), there is an integer $m \geq n$ such that $\Delta z_{m}<0$ and

$$
\begin{equation*}
a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha} \leq a_{m} \psi\left(x_{m}\right)\left(\Delta z_{m}\right)^{\alpha}, \quad \text { forn } \geq m \tag{2.3}
\end{equation*}
$$

Dividingby $a_{n} \psi\left(x_{n}\right)$ and summing the last inequality from $m t o k-1$, we obtain

$$
z_{k} \leq z_{m}+\left(a_{m} \psi\left(x_{m}\right)\right)^{\frac{1}{\alpha}} \Delta z_{m} \sum_{n=m}^{k-1} \frac{1}{\left(a_{n} \psi\left(x_{n}\right)\right)^{\frac{1}{\alpha}}} \quad \text { for } k \geq m
$$

This implies that $z_{k} \rightarrow-\infty$ as $k \rightarrow \infty$, which is a contradiction the fact that z_{n} is positive. Then $\Delta z_{n}>0$. This completes the proof of Lemma 2.1.

Lemma 2.2.Assume that $\alpha \geq 1, x_{1}, x_{2} \in[0, \infty)$. Then

$$
x_{1}^{\alpha}+x_{2}^{\alpha} \geq \frac{1}{2^{\alpha-1}}\left(x_{1}+x_{2}\right)^{\alpha}
$$

proof. The proof can be found in [6, pp. 292] and also in [8, Remark 2.1].

Lemma 2.3.Assume that $0<\alpha \leq 1, x_{1}, x_{2} \in[0, \infty)$.Then

$$
\begin{equation*}
x_{1}^{\alpha}+x_{2}^{\alpha} \geq\left(x_{1}+x_{2}\right)^{\alpha} \tag{2.4}
\end{equation*}
$$

proof. Assume that $x_{1}=0$ or $x_{2}=0$. Then we have (2.4). Assume that $x_{1}>0$ and $x_{2}>0$.Define $f\left(x_{1}, x_{2}\right)=x_{1}^{\alpha}+x_{2}^{\alpha}-$ $\left(x_{1}+x_{2}\right)^{\alpha}$. Fix x_{1}. Then

$$
\begin{aligned}
\frac{d f\left(x_{1}, x_{2}\right)}{d x_{2}} & =\alpha x_{2}^{\alpha-1}-\alpha\left(x_{1}+x_{2}\right)^{\alpha-1} \\
& =\alpha\left[x_{2}^{\alpha-1}-\left(x_{1}+x_{2}\right)^{\alpha-1}\right] \geq 0, \text { since } 0<\alpha \leq 1
\end{aligned}
$$

Thus, f is nondecreasing with respect to x_{2}, which yields $f\left(x_{1}, x_{2}\right) \geq 0$. This completes theproof.

Lemma 2.4.Let $\alpha>0$ If $f_{n}>0$ and $\Delta f_{n}>0$ for all $n \geq n_{0} \in N$, then
international journal or science and technology

$$
\Delta f_{n}^{\alpha} \geq \alpha f_{n}^{\alpha-1} \Delta f_{n} \quad \text { if } \quad \alpha \geq 1
$$

and

$$
\Delta f_{n}^{\alpha} \geq \alpha f_{n+1}^{\alpha-1} \Delta f_{n} \text { if } 0<\alpha \leq 1
$$

for all $\mathrm{n} \geq \mathrm{n}_{0}$.
proof. By Mean value theorem, we have for $n \geq n_{0}$

$$
\Delta f_{n}^{\alpha}=f_{n+1}^{\alpha}-f_{n}^{\alpha}=\alpha t^{\alpha-1} \Delta f_{n}
$$

where $f_{n}<t<f_{n+1}$. The result follows by taking $t>f_{n}$ when $\alpha \geq 1$ and $t<f n+1$ when $0<\alpha \leq 1$.

Throughout this subsection we assume that there exists a double sequence $\left\{H_{m, n} \mid m \geq n \geq 0\right\}$ and $h_{m, n}$ such that

$$
\text { (i) } H_{m, m}=0 \text { for } m \geq 0
$$

(ii) $H_{m, n}>0$ for $m>n>0$,
(iii) $\Delta_{2} H_{m, n}=H_{m, n+1}-H_{m, n} \leq 0$ for $m>n \geq 0$,

$$
\text { (iv) } h_{m, n}=-\frac{\Delta_{2} H_{m, n}}{\sqrt{H_{m, n}}}
$$

In the following results, we shall use the following notation

$$
\begin{gathered}
R_{n}:=\frac{1}{\left(a\left(G_{n}\right) \psi\left(x\left(G_{n}\right)\right)\right)^{1 / \alpha}}, \Theta_{n}:=\rho_{n} \frac{R_{n}}{\rho_{n+1}^{1+\frac{1}{\alpha}}}, \varphi_{n}:=2^{1-\alpha} \frac{\rho_{n} J_{n}}{\rho_{n+1}^{2}}, \vartheta_{m, n}:=\left(\frac{\Delta \rho_{n}}{\rho_{n+1}}-\frac{h_{m, n}}{\sqrt{H_{m, n}}}\right) \\
\Psi_{n}:=K \rho_{n} \delta_{n, \xi}-\rho_{n} \Delta\left(a_{n} \psi\left(x_{n}\right) \beta_{n}\right)+\rho_{n} R_{n}\left(a_{n+1} \psi\left(x_{n+1}\right) \beta_{n+1}\right)^{1+\frac{1}{\alpha}} \\
\eta_{n}:=\Delta \rho_{n}+\alpha \rho_{n} R_{n}\left(1+\frac{1}{\alpha}\right)\left(a_{n+1} \psi\left(x_{n+1}\right) \beta_{n+1}\right)^{\frac{1}{\alpha}} . \\
\mu_{m, k}:=\frac{\rho_{n+1}^{\alpha+1}}{(1+\alpha)^{1+\alpha}} \frac{\left(\frac{\eta_{n} H_{m, n}}{\rho_{n+1}}-h_{m, n} \sqrt{H_{m, n}}\right)^{1+\alpha}}{\left(\rho_{n} R_{n} H_{m, n}\right)^{\alpha}} .
\end{gathered}
$$

Next, we state and prove the main theorems.

E. M. Elabbasy, The Experiment, 2013, May, Vol.10. (1), 587-610

EXPERIMENT

international journal of science and technology
Theorem 2.1.Let $\alpha \geq 1$. Further, assume that there exists a positive non decreasing sequence $\left\{\rho_{n}\right\}$, such that for any $n_{1} \in N$, there exists an integer $n_{2}>n_{1}$, with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=0}^{m-1}\left(\frac{K \rho_{s}}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{s, \xi}-\frac{1}{(\alpha+1)^{\alpha+1}}\left(1+p^{\alpha}\right) \frac{\left(\Delta \rho_{s}\right)^{\alpha+1}}{\left(\rho_{s} R_{s}\right)^{\alpha}}\right)=\infty \tag{2.5}
\end{equation*}
$$

where $Q_{n, \xi}=\min \{q(n, \xi),(q(n, \xi)-\tau)\}$.

Then every solution of equation (1.1) is oscillatory.
Proof. Assume that $\left\{x_{n}\right\}$ is a positive solution of equation (1.1) which does not tend to zero as $n \rightarrow \infty$. From equation (1.1), we have

$$
\begin{equation*}
\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right) \leq-\sum_{\xi=a}^{b} q(n, \xi) f(x(g(n, \xi))) \leq 0 \tag{2.6}
\end{equation*}
$$

From (2.6) and condition $\left(A_{4}\right)$ there exists $n_{2} \geq n_{1}$ such that form $\geq n_{2}$, we get

$$
\begin{aligned}
& \begin{aligned}
& 0=\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)+\sum_{\xi=a}^{b} q(n, \xi) f(x(g(n, \xi))) \\
&=\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)+\sum_{\xi=a}^{b} q(n, \xi) f(x(g(n, \xi))) \\
&+p^{\alpha}\left[\Delta\left(a_{n-\tau} \psi\left(x_{n-\tau}\right)\left(\Delta z_{n-\tau}\right)^{\alpha}\right)+\sum_{\xi=a}^{b} q((n, \xi)-\tau) f(x(g(n, \xi)-\tau))\right] \\
&=\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)+\sum_{\xi=a}^{b} q(n, \xi) f(x(g(n, \xi)))
\end{aligned} \\
& \begin{aligned}
=\left[\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)+p^{\alpha}\left(\Delta\left(a_{n-\tau} \psi\left(x_{n-\tau}\right)\left(\Delta z_{n-\tau}\right)^{\alpha}\right)\right)\right]
\end{aligned} \\
& \quad+\sum_{\xi=a}^{b}\left\{q(n, \xi) f(x(g(n, \xi)))+p^{\alpha} q((n, \xi)-\tau) f(x(g(n, \xi)-\tau))\right\}
\end{aligned}
$$

international journal of science and technology

$$
\begin{aligned}
& \geq\left[\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)+p^{\alpha}\left[\Delta\left(a_{n-\tau} \psi\left(x_{n-\tau}\right)\left(\Delta z_{n-\tau}\right)^{\alpha}\right)\right]\right] \\
& \\
& \quad+K \sum_{\xi=a}^{b} Q_{n, \xi}\left\{x^{\alpha}(g(n, \xi))+p^{\alpha} x^{\alpha}(g(n, \xi)-\tau)\right\} .
\end{aligned}
$$

By using Lemma 2.2, we obtain

$$
\left[\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)+p^{\alpha}\left[\Delta\left(a_{n-\tau} \psi\left(x_{n-\tau}\right)\left(\Delta z_{n-\tau}\right)^{\alpha}\right)\right]\right]+\frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi} Z^{\alpha}(g(n, \xi)) \leq 0
$$

Further, it is clear from $\left(A_{3}\right)$

$$
g(n, \xi) \geq \min \{g(n, a), g(n, b)\} \equiv G_{n}, \xi \in N(a, b) .
$$

Thus

$$
\begin{equation*}
\left[\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)+p^{\alpha}\left[\Delta\left(a_{n-\tau} \psi\left(x_{n-\tau}\right)\left(\Delta z_{n-\tau}\right)^{\alpha}\right)\right]\right]+\frac{K}{2^{\alpha-1}} z^{\alpha}\left(G_{n}\right) \sum_{\xi=a}^{b} Q_{n, \xi} \leq 0 \tag{2.7}
\end{equation*}
$$

Define

$$
\begin{equation*}
\omega_{n}:=\rho_{n} \frac{a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}}{z^{\alpha}\left(G_{n}\right)} \tag{2.8}
\end{equation*}
$$

Then $\omega_{n}>0$. From (2.8), we have

$$
\begin{align*}
\Delta \omega_{n} & =\Delta \rho_{n} \frac{a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha}}{z^{\alpha}\left(G_{n+1}\right)}+\rho_{n} \Delta\left(\frac{a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}}{z^{\alpha}\left(G_{n}\right)}\right) \\
& =\Delta \rho_{n} \frac{a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha}}{z^{\alpha}\left(G_{n+1}\right)}+\rho_{n} \frac{\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)}{z^{\alpha}\left(G_{n}\right)} \\
& \quad-\rho_{n} \frac{a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha} \Delta\left(z^{\alpha}\left(G_{n}\right)\right)}{z^{\alpha}\left(G_{n+1}\right) z^{\alpha}\left(G_{n}\right)} . \tag{2.9}
\end{align*}
$$

Since $\Delta z_{n}>0$, and from the lemma (2.4), we have

$$
\begin{align*}
\Delta\left(z^{\alpha}\left(G_{n}\right)\right)=z^{\alpha}\left(G_{n+1}\right)-z^{\alpha}\left(G_{n}\right) \geq \alpha z^{\alpha-1}\left(G_{n}\right)\left(z\left(G_{n+1}\right)\right. & \left.-z\left(G_{n}\right)\right) \\
& =\alpha z^{\alpha-1}\left(G_{n}\right) \Delta\left(z\left(G_{n}\right)\right), \alpha \geq 1 \tag{2.10}
\end{align*}
$$

Substitute from (2.10)in(2.9), we have

$$
\Delta \omega_{n} \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}+\rho_{n} \frac{\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)}{z^{\alpha}\left(G_{n}\right)}
$$

international journal or science and technology

$$
\begin{equation*}
-\alpha \rho_{n} \frac{a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha} z^{\alpha-1}\left(G_{n}\right) \Delta\left(z\left(G_{n}\right)\right)}{z^{2 \alpha}\left(G_{n+1}\right)} \tag{2.11}
\end{equation*}
$$

By Lemma (2.1), since $a_{n} \psi\left(x_{n}\right)\left|\Delta z_{n}\right|^{\alpha-1} \Delta z_{n}=a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}$ is decreasing sequance then $a_{n} \psi\left(x_{n}\right)$
$\left(\Delta z_{n}\right)^{\alpha} \leq a\left(G_{n}\right) \psi\left(x\left(G_{n}\right)\right)\left(\Delta z\left(G_{n}\right)\right)^{\alpha}$. Then it follows that

$$
\begin{equation*}
\frac{\Delta\left(z\left(G_{n}\right)\right)}{\Delta z_{n}} \geq\left(\frac{a_{n} \psi\left(x_{n}\right)}{a\left(G_{n}\right) \psi\left(x\left(G_{n}\right)\right)}\right)^{1 / \alpha} \tag{2.12}
\end{equation*}
$$

It follows from (2.11) and (2.12) that

$$
\begin{align*}
\Delta \omega_{n} \leq \frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}+\rho_{n} & \frac{\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)}{z^{\alpha}\left(G_{n}\right)} \\
& -\alpha \rho_{n} \frac{a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha}}{z^{\alpha}\left(G_{n+1}\right)} \frac{z^{\alpha-1}\left(G_{n}\right)}{z^{\alpha}\left(G_{n+1}\right)} \frac{\left(a_{n} \psi\left(x_{n}\right)\right)^{1 / \alpha} \Delta z_{n}}{\left(a\left(G_{n}\right) \psi\left(x\left(G_{n}\right)\right)\right)^{1 / \alpha}} \\
& =\rho_{n} \frac{\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)}{z^{\alpha}\left(G_{n}\right)}+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-\alpha \rho_{n} \frac{R_{n}}{\rho_{n+1}^{\alpha+1 / \alpha}} \omega_{n+1}^{\frac{\alpha+1}{\alpha}} \tag{2.13}
\end{align*}
$$

Similarly, define another sequence v_{n} by

$$
\begin{equation*}
v_{n}:=\rho_{n} \frac{a_{n-\tau} \psi\left(x_{n-\tau}\right)\left(\Delta z_{n-\tau}\right)^{\alpha}}{z^{\alpha}\left(G_{n}\right)} \tag{2.14}
\end{equation*}
$$

Then $v_{n}>0$.From (2.14), we have

$$
\begin{align*}
\Delta v_{n} & =\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}+\rho_{n} \Delta\left(\frac{a_{n-\tau} \psi\left(x_{n-\tau}\right)\left(\Delta z_{n-\tau}\right)^{\alpha}}{z^{\alpha}\left(G_{n}\right)}\right) \\
& =\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}+\rho_{n} \frac{\Delta\left(a_{n-\tau} \psi\left(x_{n-\tau}\right)\left(\Delta z_{n-\tau}\right)^{\alpha}\right)}{z^{\alpha}\left(G_{n}\right)} \\
& \quad-\rho_{n} \frac{a_{n+1-\tau} \psi\left(x_{n+1-\tau}\right)\left(\Delta z_{n+1-\tau}\right)^{\alpha} \Delta\left(z^{\alpha}\left(G_{n}\right)\right)}{z^{\alpha}\left(G_{n+1}\right) z^{\alpha}\left(G_{n}\right)} \tag{2.15}
\end{align*}
$$

From (2.14),(2.15) and (2.12), we have

$$
\begin{equation*}
\Delta v_{n} \leq \rho_{n} \frac{\Delta\left(a_{n-\tau} \psi\left(x_{n-\tau}\right)\left(\Delta z_{n-\tau}\right)^{\alpha}\right)}{z^{\alpha}\left(G_{n}\right)}+\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-\alpha \rho_{n} \frac{R_{n}}{\rho_{n+1}^{\alpha+1 / \alpha}} v_{n+1}^{\frac{\alpha+1}{\alpha}} \tag{2.16}
\end{equation*}
$$

From (2.13) and (2.16), we obtain
international journal of science and technology

$$
\Delta \omega_{n}+p^{\alpha} \Delta v_{n} \leq \rho_{n} \frac{\left[\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)+p^{\alpha} \Delta\left(a_{n-\tau} \psi\left(x_{n-\tau}\right)\left(\Delta z_{n-\tau}\right)^{\alpha}\right)\right]}{z^{\alpha}\left(G_{n}\right)}
$$

$$
\begin{equation*}
+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-\alpha \rho_{n} \frac{R_{n}}{\rho_{n+1}^{\alpha+1} / \alpha} \omega_{n+1}^{\frac{\alpha+1}{\alpha}}+p^{\alpha}\left[\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-\alpha \rho_{n} \frac{R_{n}}{\rho_{n+1}^{\alpha+1 / \alpha}} v_{n+1}^{\frac{\alpha+1}{\alpha}}\right] \tag{2.17}
\end{equation*}
$$

From (2.7) and (2.17), we have

$$
\Delta \omega_{n}+p^{\alpha} \Delta v_{n} \leq-\rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-\alpha \rho_{n} \frac{R_{n}}{\rho_{n+1}^{\alpha+1}} \omega_{n+1}^{\frac{\alpha+1}{\alpha}}
$$

$$
\begin{equation*}
+p^{\alpha}\left[\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-\alpha \rho_{n} \frac{R_{n}}{\rho_{n+1}^{\alpha+1 / \alpha}} v_{n+1}^{\frac{\alpha+1}{\alpha}}\right] \tag{2.18}
\end{equation*}
$$

Using (2.18) and the inequality

$$
\begin{equation*}
B u-A u^{\alpha+1 / \alpha} \leq \frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}} \frac{B^{\alpha+1}}{A^{\alpha}}, A>0 \tag{2.19}
\end{equation*}
$$

we have

$$
\Delta \omega_{n}+p^{\alpha} \Delta v_{n} \leq-\rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}+\frac{1}{(\alpha+1)^{\alpha+1}} \frac{\left(\Delta \rho_{n}\right)^{\alpha+1}}{\left(\rho_{n} R_{n}\right)^{\alpha}}+\frac{p^{\alpha}}{(\alpha+1)^{\alpha+1}} \frac{\left(\Delta \rho_{n}\right)^{\alpha+1}}{\left(\rho_{n} R_{n}\right)^{\alpha}}
$$

Summing the lastinequality from n_{2} to $n-1$, we obtain

$$
\sum_{s=n_{2}}^{n-1}\left(\rho_{s} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{s, \xi}-\frac{1}{(\alpha+1)^{\alpha+1}}\left(1+p^{\alpha}\right) \frac{\left(\Delta \rho_{s}\right)^{\alpha+1}}{\left(\rho_{s} R_{s}\right)^{\alpha}}\right) \leq \omega_{n_{2}}+p^{\alpha} v_{n_{2}}
$$

Which yields

$$
\sum_{s=n_{2}}^{n-1}\left(\rho_{s} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{s, \xi}-\frac{1}{(\alpha+1)^{\alpha+1}}\left(1+p^{\alpha}\right) \frac{\left(\Delta \rho_{s}\right)^{\alpha+1}}{\left(\rho_{s} R_{S}\right)^{\alpha}}\right) \leq c_{1}
$$

where $_{1}>0$ is a finite constant. But, this contradicts(2.5). This completes the proof of Theorem 2.1.
Remark 2.1.Note that from Theorem 2.1, we can obtain different conditions for oscillation of all solutions of equation (1.1) by different choices of $\left\{\rho_{n}\right\}$. Let $\rho_{n}=n^{\lambda}, n \geq n_{0}$ and $\lambda>1$ is a constant. By Theorem 2.1, we have the following result.

Corollary 2.1.Assume that all the assumptions of Theorem 2.1 hold, except the condition (2.5) is replaced by
international journal of science and technology

$$
\lim _{n \rightarrow \infty} \sup \sum_{l=n_{0}}^{n}\left(\rho_{l} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{l, \xi}-\left(1+p^{\alpha}\right) \frac{\left((l+1)^{\lambda}-l^{\lambda}\right)^{\alpha+1}}{(\alpha+1)^{\alpha+1}\left(l^{\lambda} R_{l}\right)^{\alpha}}\right)=\infty
$$

Then every solution of equation (1.1) is oscillatory.

Remark2.2.If $\psi\left(x_{n}\right) \equiv 1, \alpha \equiv 1, g(n, \xi) \equiv g(n), q(n, \xi) \equiv q(n)$. Then Theorem 2.1 extended and improved Theorem 1 in [19].

By using the inequality in Lemma 2.3, we obtain the following result.

Theorem 2.2. Let $0<\alpha \leq 1$. Further, assume that there exists a positive non decreasing sequence $\left\{\rho_{n}\right\}$, such that for any $n_{1} \in$ N, there exists an integer $n_{2}>n_{1}$, with

$$
\lim _{m \rightarrow \infty} \sup \sum_{n=n_{0}}^{m-1}\left(K \rho_{n} \sum_{\xi=a}^{b} Q_{n, \xi}-\frac{\left(1+p^{\alpha}\right)}{(\alpha+1)^{\alpha+1}} \frac{\left(\Delta \rho_{n}\right)^{\alpha+1}}{\left(\rho_{n} R_{n}\right)^{\alpha}}\right)=\infty
$$

Then equation (1.1) is oscillatory.
Proof. The proof is similar to that of Theorem 2.1 and hence the details are omitted.

Theorem 2.3.Assume that $\alpha \geq 1$, and let $\left\{\rho_{n}\right\}$ be a positive sequence. Furthermore, we assume that there exists a double sequence $\left\{H_{m, n} \mid m \geq n \geq 0\right\}$. If

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, 0}} \sum_{n=0}^{m-1}\left(H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}-\left(1+p^{\alpha}\right) \frac{1}{(\alpha+1)^{\alpha+1}} \frac{\vartheta_{m, n}^{\alpha+1} H_{m, n}}{\Theta_{n}^{\alpha}}\right)=\infty \tag{2.20}
\end{equation*}
$$

Then every solution of equation (1.1) is oscillatory.
Proof. Proceeding as in Theorem 2.1 we assume that equation (1.1) has a non- oscillatory solution, say $x_{n}>0$ and $x_{n-\tau}>0$ for all $n \geq n_{0}$. From the proofof Theorem 2.1, we find that (2.18) holds for all $n \geq n_{2}$. From (2.18), we have

$$
\rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi} \leq-\Delta \omega_{n}-p^{\alpha} \Delta v_{n}+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-\alpha \Theta_{n} \omega_{n+1}^{\frac{\alpha+1}{\alpha}}+p^{\alpha}\left[\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-\alpha \Theta_{n} v_{n+1}^{\frac{\alpha+1}{\alpha}}\right]
$$

Therefore, we have

EXPERIMENT

$$
\begin{aligned}
\sum_{n=k}^{m-1} H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi} \leq & -\sum_{n=k}^{m-1} H_{m, n} \Delta \omega_{n}-p^{\alpha} \sum_{n=k}^{m-1} H_{m, n} \Delta v_{n}+\sum_{n=k}^{m-1} H_{m, n} \frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1} \\
& -\sum_{n=k}^{m-1} \alpha H_{m, n} \Theta_{n} \omega_{n+1}^{\frac{\alpha+1}{\alpha}}+p^{\alpha} \sum_{n=k}^{m-1} H_{m, n} \frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-\alpha p^{\alpha} \sum_{n=k}^{m-1} H_{m, n} \Theta_{n} v_{n+1}^{\frac{\alpha+1}{\alpha}}
\end{aligned}
$$

whichyields after summing by parts

$$
\begin{aligned}
\sum_{n=k}^{m-1} H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}= & H_{m, k} \omega_{k}+\sum_{n=k}^{m-1}\left(\Delta_{2} H_{m, n}+H_{m, n} \frac{\Delta \rho_{n}}{\rho_{n+1}}\right) \omega_{n+1}-\alpha \sum_{n=k}^{m-1} H_{m, n} \Theta_{n} \omega_{n+1}^{\alpha+1 / \alpha} \\
& +p^{\alpha} H_{m, k} v_{k}+p^{\alpha} \sum_{n=k}^{m-1}\left(\Delta_{2} H_{m, n}+H_{m, n} \frac{\Delta \rho_{n}}{\rho_{n+1}}\right) v_{n+1}-\alpha p^{\alpha} \sum_{n=k}^{m-1} H_{m, n} \Theta_{n} v_{n+1}^{\alpha+1 / \alpha}
\end{aligned}
$$

Hence

$$
\begin{gathered}
\sum_{n=k}^{m-1} H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi} \leq H_{m, k} \omega_{k}+\sum_{n=k}^{m-1}\left(\frac{\Delta \rho_{n}}{\rho_{n+1}}-\frac{h_{m, n}}{\sqrt{H_{m, n}}}\right) H_{m, n} \omega_{n+1}-\alpha \sum_{n=k}^{m-1} H_{m, n} \Theta_{n} \omega_{n+1}^{\alpha+1 / \alpha} \\
+p^{\alpha} H_{m, k} v_{k}+p^{\alpha} \sum_{n=k}^{m-1}\left(\frac{\Delta \rho_{n}}{\rho_{n+1}}-\frac{h_{m, n}}{\sqrt{H_{m, n}}}\right) H_{m, n} v_{n+1}-\alpha p^{\alpha} \sum_{n=k}^{m-1} H_{m, n} \Theta_{n} v_{n+1}^{\alpha+1 / \alpha} \\
=H_{m, k} \omega_{k}+\sum_{n=k}^{m-1} \vartheta_{m, n} H_{m, n} \omega_{n+1}-\alpha \sum_{n=k}^{m-1} H_{m, n} \Theta_{n} \omega_{n+1}^{\alpha+1 / \alpha} \\
+p^{\alpha} H_{m, k} v_{k}+p^{\alpha} \sum_{n=k}^{m-1} \vartheta_{m, n} H_{m, n} v_{n+1}-\alpha p^{\alpha} \sum_{n=k}^{m-1} H_{m, n} \Theta_{n} v_{n+1}^{\alpha+1 / \alpha}
\end{gathered}
$$

From (2.19), we have

$$
\begin{aligned}
\sum_{n=k}^{m-1} H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi} \leq H_{m, k} \omega_{k} & \\
& +\sum_{n=k}^{m-1} \frac{1}{(\alpha+1)^{\alpha+1}} \frac{\vartheta_{m, n}^{\alpha+1} H_{m, n}}{\Theta_{n}^{\alpha}}+p^{\alpha} H_{m, k} v_{k}+p^{\alpha} \sum_{n=k}^{m-1} \frac{1}{(\alpha+1)^{\alpha+1}} \frac{\vartheta_{m, n}^{\alpha+1} H_{m, n}}{\Theta_{n}^{\alpha}}
\end{aligned}
$$

Then,

EXPERIMENT

INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY

$$
\sum_{n=k}^{m-1}\left(H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}-\left(1+p^{\alpha}\right) \frac{1}{(\alpha+1)^{\alpha+1}} \frac{\vartheta_{m, n}^{\alpha+1} H_{m, n}}{\Theta_{n}^{\alpha}}\right) \leq H_{m, k} \omega_{k}+p^{\alpha} H_{m, k} v_{k}
$$

which implies

$$
\sum_{n=k}^{m-1}\left(H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}-\left(1+p^{\alpha}\right) \frac{1}{(\alpha+1)^{\alpha+1}} \frac{\vartheta_{m, n}^{\alpha+1} H_{m, n}}{\Theta_{n}^{\alpha}}\right) \leq H_{m, 0}\left|\omega_{k}\right|+p^{\alpha} H_{m, 0}\left|v_{k}\right|
$$

Hence,

$$
\begin{aligned}
& \sum_{n=0}^{m-1}\left(H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}-\left(1+p^{\alpha}\right) \frac{1}{(\alpha+1)^{\alpha+1}} \frac{\vartheta_{m, n}^{\alpha+1} H_{m, n}}{\Theta_{n}^{\alpha}}\right) \leq \\
& H_{m, 0}\left\{\sum_{n=0}^{k-1}\left|\rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}\right|+\left|\omega_{k}\right|+p^{\alpha}\left|v_{k}\right|\right\}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, 0}} \sum_{n=0}^{m-1}\left(H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}\right. & \left.-\left(1+p^{\alpha}\right) \frac{1}{(\alpha+1)^{\alpha+1}} \frac{\vartheta_{m, n}^{\alpha+1} H_{m, n}}{\Theta_{n}^{\alpha}}\right) \\
& \leq \sum_{n=0}^{k-1}\left|\rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}\right|+\left|\omega_{k}\right|+p^{\alpha}\left|v_{k}\right|<\infty
\end{aligned}
$$

which is contrary to (2.20). This completes the proof of Theorem 2.3.

Corollary 2.2.Assume that all the assumptions of Theorem 2.3 hold, except the condition (2.20) is replaced by

$$
\begin{gathered}
\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, 0}} \sum_{n=0}^{m-1} H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}=\infty, \\
\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, 0}} \sum_{n=0}^{m-1} \frac{\left(1+p^{\alpha}\right)}{(\alpha+1)^{\alpha+1}} \frac{\vartheta_{m, n}^{\alpha+1} H_{m, n}}{\Theta_{n}^{\alpha}}<\infty .
\end{gathered}
$$

Then equation (1.1) is oscillatory.
international journal of science and technology
Remark2.3. By choosing specific sequence $H_{m, n}$, we can derive several oscillation criteria for (1.1).Let us consider the double sequence $H_{m, n}$ defined by

$$
H_{m, n}=(m-n)^{\lambda}, \lambda \geq 1, m \geq n \geq 0
$$

Then $H_{m, m}=0$ for $\mathrm{m} \geq 0$ and $H_{m, n}>0$ and $\Delta_{2} H_{m, n} \leq 0$ for $m>n \geq 0$. By Theorem 2.3, we get the following oscillation criteria for (1.1).

Corollary2.3. Assume that all the assumptions of Theorem 2.2 hold, except the condition (2.20) is replaced by

$$
\lim _{m \rightarrow \infty} \sup \frac{1}{m^{\lambda}} \sum_{n=0}^{m-1}\left((m-n)^{\lambda}\left(\rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}-\frac{\left(1+p^{\alpha}\right)}{(\alpha+1)^{\alpha+1}\left(\rho_{n} R_{n}\right)^{\alpha}}\left(\Delta \rho_{n}-\frac{\lambda \rho_{n+1}}{(m-n)}\right)^{\alpha+1}\right)\right)=\infty
$$

Then equation (1.1) is oscillatory.

Remark 2.4.If $\psi\left(x_{n}\right) \equiv 1, p_{n} \equiv 0, g(n, \xi) \equiv n-\sigma, q(n, \xi) \equiv q(n)$ then Theorem 2.1and 2.3 extended and improved Theorem 2.1 and 2.2respectively in [15].

By using the inequality in Lemma 2.3, we obtain the following result.

Theorem2.4.Let $0<\alpha \leq 1$. Further, assume that there exists a positive non decreasing sequence $\left\{\rho_{n}\right\}$, such that for any $n_{1} \in N$, there existsan integer $n_{2}>n_{1}$, with

$$
\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, 0}} \sum_{n=0}^{m-1}\left(H_{m, n} \rho_{n} K \sum_{\xi=a}^{b} Q_{n, \xi}-\left(1+p^{\alpha}\right) \frac{1}{(\alpha+1)^{\alpha+1}} \frac{\vartheta_{m, n}^{\alpha+1} H_{m, n}}{\Theta_{n}^{\alpha}}\right)=\infty
$$

Then equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 2.3 and hence the details are omitted.
Theorem 2.5.Let $\alpha \geq 1$. Further, assume that there exists a positive non decreasing sequence $\left\{\rho_{n}\right\}$, such that for any $n_{1} \in N$, there exists an integer $n_{2}>n_{1}$, with

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup \sum_{l=n_{0}}^{m-1}\left(\frac{K \rho_{l}}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{l, \xi}-\frac{\left(1+p^{\alpha}\right)}{2^{3-\alpha}} \frac{\left(\Delta \rho_{l}\right)^{2}}{\rho_{l} \mathrm{~J}_{1}}\right)=\infty \tag{2.21}
\end{equation*}
$$

where $J_{n}=R_{n}^{\alpha}$.
international journal of science and technology
Then every solution of equation (1.1) oscillatory.
Proof.Assume that $\left\{x_{n}\right\}$ is a positive solution of equation (1.1) which does not tend to zero as $n \rightarrow \infty$. By Lemma 2.1, we have (2.1) and from Theorem 2.1, we have (2.7).Define ω_{n} and v_{n} by (2.8) and (2.14) respectively. Proceeding as in the proof of Theorem 2.1, we obtain (2.9) and (2.15). By using the inequality
$x^{\alpha}-y^{\alpha} \geq 2^{1-\alpha}(x-y)^{\alpha}$ for $x \geq y>0$ and $\alpha \geq 1$, we have

$$
\begin{equation*}
\Delta\left(z^{\alpha}\left(G_{n}\right)\right)=z^{\alpha}\left(G_{n+1}\right)-z^{\alpha}\left(G_{n}\right) \geq 2^{1-\alpha}\left(z\left(G_{n+1}\right)-z\left(G_{n}\right)\right)^{\alpha}=2^{1-\alpha}\left(\Delta z\left(G_{n}\right)\right)^{\alpha}, \alpha \geq 1 . \tag{2.22}
\end{equation*}
$$

Substitute from (2.22)in (2.9), we have

$$
\begin{equation*}
\Delta \omega_{n} \leq \rho_{n} \frac{\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)}{z^{\alpha}\left(G_{n}\right)}+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-2^{1-\alpha} \rho_{n} \frac{a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha}\left(\Delta\left(z\left(G_{n}\right)\right)\right)^{\alpha}}{z^{2 \alpha}\left(G_{n+1}\right)} . \tag{2.23}
\end{equation*}
$$

From (2.12), we have

$$
\begin{align*}
\Delta \omega_{n} \leq & \rho_{n} \frac{\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)}{z^{\alpha}\left(G_{n}\right)}+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1} \\
& -2^{1-\alpha} \rho_{n} \frac{a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha}}{z^{\alpha}\left(G_{n+1}\right)} \frac{a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}}{z^{\alpha}\left(G_{n+1}\right)} \frac{1}{a\left(G_{n}\right) \psi\left(x\left(G_{n}\right)\right)} \\
& \leq \rho_{n} \frac{\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)}{z^{\alpha}\left(G_{n}\right)}+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-2^{1-\alpha} \frac{\rho_{n} J_{n}}{\rho_{n+1}^{2}} \omega_{n+1}^{2} . \tag{2.24}
\end{align*}
$$

On the other hand, from (2.15), we have

$$
\begin{equation*}
\Delta v_{n} \leq \rho_{n} \frac{\Delta\left(a_{n-\tau} \psi\left(x_{n-\tau}\right)\left(\Delta z_{n-\tau}\right)^{\alpha}\right)}{z^{\alpha}\left(G_{n}\right)}+\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-2^{1-\alpha} \frac{\rho_{n} \mathrm{~J}_{\mathrm{n}}}{\rho_{n+1}^{2}} v_{n+1}^{2} . \tag{2.25}
\end{equation*}
$$

From (2.24) and (2.25), we obtain

$$
\begin{align*}
&\left.\Delta \omega_{n}+p^{\alpha} \Delta v_{n} \leq \rho_{n} \frac{\left[\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)\right.}{}+p^{\alpha} \Delta\left(a_{n-\tau} \psi\left(x_{n-\tau}\right)\left(\Delta z_{n-\tau}\right)^{\alpha}\right)\right] \\
& z^{\alpha}\left(G_{n}\right) \tag{2.26}\\
&+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-2^{1-\alpha} \frac{\rho_{n} J_{n}}{\rho_{n+1}^{2}} \omega_{n+1}^{2}+p^{\alpha}\left[\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-2^{1-\alpha} \frac{\rho_{n} \mathrm{~J}_{n}}{\rho_{n+1}^{2}} v_{n+1}^{2}\right] .
\end{align*}
$$

From (2.7) and (2.26), we have

$$
\begin{align*}
\Delta \omega_{n}+p^{\alpha} \Delta v_{n} \leq-\rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-2^{1-\alpha} \frac{\rho_{n} \mathrm{~J}_{\mathrm{n}}}{\rho_{n+1}^{2}} \omega_{n+1}^{2} & \\
& +p^{\alpha}\left[\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-2^{1-\alpha} \frac{\rho_{n} \mathrm{~J}_{\mathrm{n}}}{\rho_{n+1}^{2}} v_{n+1}^{2}\right] \tag{2.27}
\end{align*}
$$

International journal of science and technology
Using the inequality $B u-A u^{2} \leq \frac{B^{2}}{4 A}, A>0$ in (2.27), we have

$$
\begin{equation*}
\Delta \omega_{n}+p^{\alpha} \Delta v_{n} \leq-\rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}+\frac{1}{2^{3-\alpha}}\left(1+p^{\alpha}\right) \frac{\left(\Delta \rho_{n}\right)^{2}}{\rho_{n} J_{\mathrm{n}}} \tag{2.28}
\end{equation*}
$$

Summing (2.28) from n_{2} to $n-1$, we obtain

$$
\sum_{s=n_{2}}^{n-1}\left(\rho_{s} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{s, \xi}-\frac{1}{2^{3-\alpha}}\left(1+p^{\alpha}\right) \frac{\left(\Delta \rho_{s}\right)^{2}}{\rho_{n} J_{s}}\right) \leq \omega_{n_{2}}+p^{\alpha} v_{n_{2}}
$$

which yields

$$
\sum_{s=n_{2}}^{n-1}\left(\rho_{s} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{s, \xi}-\frac{\left(1+p^{\alpha}\right)}{2^{3-\alpha}} \frac{\left(\Delta \rho_{s}\right)^{2}}{\rho_{s} J_{s}}\right) \leq c_{1}
$$

where $c_{1}>0$ is a finite constant. Taking lim sup in the above inequality, we obtain a contradiction with (2.21).
This completes the proof of Theorem 2.5.

By using the inequality in Lemma 2.3, we obtain the following result.

Theorem 2.6.Let $0<\alpha \leq 1$. Further, assume that there exists a positive non decreasing sequence $\left\{\rho_{n}\right\}$, such that for any $n_{1} \in N$, there exists an integer $n_{2}>n_{1}$, with

$$
\lim _{n \rightarrow \infty} \sup \sum_{n=n_{2}}^{n-1}\left(\rho_{n} K \sum_{\xi=a}^{b} Q_{n, \xi}-\frac{1}{2^{3-\alpha}}\left(1+p^{\alpha}\right) \frac{\left(\Delta \rho_{n}\right)^{2}}{\rho_{n} \mathrm{~J}_{\mathrm{n}}}\right)=\infty .
$$

Then equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 2.5 and hence the details are omitted.

Theorem2.7.Assume that $\alpha \geq 1$ and let $\left\{\rho_{n}\right\}$ be a positive sequence. Furthermore, we assume that there exists a double sequence $\left\{H_{m, n} \mid m \geq n \geq 0\right\}$. If

International journal or science and technology

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, 0}} \sum_{n=0}^{m-1}\left(H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}-\left(1+p^{\alpha}\right) \frac{\vartheta_{m, n}^{2} H_{m, n}}{4 \varphi_{n}}\right)=\infty \tag{2.29}
\end{equation*}
$$

Then every solution of equation (1.1) isoscillatory.
Proof.Proceeding as in Theorem 2.5 we assume that equation (1.1) has a non- oscillatory solution, say $x_{n}>0$ and $x_{n-\tau}>0$ for all $n \geq n_{0}$. From the proofof Theorem 2.5 we find that (2.27) holds for all $n \geq n_{2}$. From (2.27), we have

$$
\begin{equation*}
\rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi} \leq-\Delta \omega_{n}-p^{\alpha} \Delta v_{n}+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-\varphi_{n} \omega_{n+1}^{2}+p^{\alpha}\left[\frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-\varphi_{n} v_{n+1}^{2}\right] \tag{2.30}
\end{equation*}
$$

Therefore, we have

$$
\begin{aligned}
\sum_{n=k}^{m-1} H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi} \leq- & \sum_{n=k}^{m-1} H_{m, n} \Delta \omega_{n}-p^{\alpha} \sum_{n=k}^{m-1} H_{m, n} \Delta v_{n} \\
& +\sum_{n=k}^{m-1} H_{m, n} \frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-\sum_{n=k}^{m-1} H_{m, n} \varphi_{n} \omega_{n+1}^{2} \\
& +p^{\alpha} \sum_{n=k}^{m-1} H_{m, n} \frac{\Delta \rho_{n}}{\rho_{n+1}} v_{n+1}-p^{\alpha} \sum_{n=k}^{m-1} H_{m, n} \varphi_{n} v_{n+1}^{2}
\end{aligned}
$$

Which yields after summing by parts

$$
\begin{aligned}
\sum_{n=k}^{m-1} H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi} \leq & H_{m, k} \omega_{k}+\sum_{n=k}^{m-1}\left(\Delta_{2} H_{m, n}+H_{m, n} \frac{\Delta \rho_{n}}{\rho_{n+1}}\right) \omega_{n+1}-\sum_{n=k}^{m-1} H_{m, n} \varphi_{n} \omega_{n+1}^{2} \\
& +p^{\alpha} H_{m, k} v_{k}+p^{\alpha} \sum_{n=k}^{m-1}\left(\Delta_{2} H_{m, n}+H_{m, n} \frac{\Delta \rho_{n}}{\rho_{n+1}}\right) v_{n+1}-p^{\alpha} \sum_{n=k}^{m-1} H_{m, n} \varphi_{n} v_{n+1}^{2} \\
= & H_{m, k} \omega_{k}+\sum_{n=k}^{m-1}\left(\frac{\Delta \rho_{n}}{\rho_{n+1}}-\frac{h_{m, n}}{\sqrt{H_{m, n}}}\right) H_{m, n} \omega_{n+1}-\sum_{n=k}^{m-1} H_{m, n} \varphi_{n} \omega_{n+1}^{2} \\
& +p^{\alpha} H_{m, k} v_{k}+p^{\alpha} \sum_{n=k}^{m-1}\left(\frac{\Delta \rho_{n}}{\rho_{n+1}}-\frac{h_{m, n}}{\sqrt{H_{m, n}}}\right) H_{m, n} v_{n+1}-p^{\alpha} \sum_{n=k}^{m-1} H_{m, n} \varphi_{n} v_{n+1}^{2} \\
= & H_{m, k} \omega_{k}+\sum_{n=k}^{m-1} \vartheta_{m, n} H_{m, n} \omega_{n+1}-\sum_{n=k}^{m-1} H_{m, n} \varphi_{n} \omega_{n+1}^{2}
\end{aligned}
$$

EXPERIMENT

international journal or science and technology

$$
+p^{\alpha} H_{m, k} v_{k}+p^{\alpha} \sum_{n=k}^{m-1} \vartheta_{m, n} H_{m, n} v_{n+1}-p^{\alpha} \sum_{n=k}^{m-1} H_{m, n} \varphi_{n} v_{n+1}^{2}
$$

Using the inequality $B u-A u^{2} \leq \frac{B^{2}}{4 A}, A>0$, we have

$$
\begin{align*}
& \sum_{n=k}^{m-1} H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi} \leq H_{m, k} \omega_{k}+\sum_{n=k}^{m-1} \frac{\vartheta_{m, n}^{2} H_{m, n}}{4 \varphi_{n}}-\sum_{n=k}^{m-1}\left[\sqrt{H_{m, n} \varphi_{n}} \omega_{n+1}+\frac{\vartheta_{m, n}}{2} \sqrt{\frac{H_{m, n}}{\varphi_{n}}}\right]^{2} \\
& +p^{\alpha} H_{m, k} v_{k}+p^{\alpha} \sum_{n=k}^{m-1} \frac{\vartheta_{m, n}^{2} H_{m, n}}{4 \varphi_{n}}-\sum_{n=k}^{m-1}\left[\sqrt{H_{m, n} \varphi_{n}} v_{n+1}+\frac{\vartheta_{m, n}}{2} \sqrt{\frac{H_{m, n}}{\varphi_{n}}}\right]^{2} . \tag{2.31}
\end{align*}
$$

Then,

$$
\sum_{n=k}^{m-1}\left(H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}-\left(1+p^{\alpha}\right) \frac{\vartheta_{m, n}^{2} H_{m, n}}{4 \varphi_{n}}\right) \leq H_{m, k} \omega_{k}+p^{\alpha} H_{m, k} v_{k}
$$

which implies

$$
\sum_{n=k}^{m-1}\left(H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}-\left(1+p^{\alpha}\right) \frac{\vartheta_{m, n}^{2} H_{m, n}}{4 \varphi_{n}}\right) \leq H_{m, 0}\left|\omega_{k}\right|+p^{\alpha} H_{m, 0}\left|v_{k}\right|
$$

Hence,

$$
\sum_{n=0}^{m-1}\left(H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}-\left(1+p^{\alpha}\right) \frac{\vartheta_{m, n}^{2} H_{m, n}}{4 \varphi_{n}}\right) \leq H_{m, 0}\left\{\sum_{n=0}^{k-1}\left|\rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}\right|+\left|\omega_{k}\right|+p^{\alpha}\left|v_{k}\right|\right\}
$$

Hence,

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, 0}} \sum_{n=0}^{m-1}\left(H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}\right. & \left.-\left(1+p^{\alpha}\right) \frac{\vartheta_{m, n}^{2} H_{m, n}}{4 \varphi_{n}}\right) \\
& \leq \sum_{n=0}^{k-1}\left|\rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}\right|+\left|\omega_{k}\right|+p^{\alpha}\left|v_{k}\right|<\infty,
\end{aligned}
$$

which is contrary to (2.29). This completes the proof of Theorem 2.7.
international journal or science and technology
Corollary 2.4.Assume that all the assumptions of Theorem 2.7 hold, except the condition (2.29) is replaced by

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, 0}} \sum_{n=0}^{m-1} H_{m, n} \rho_{n} \frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}=\infty, \\
& \lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, 0}} \sum_{n=0}^{m-1}\left(1+p^{\alpha}\right) \frac{\vartheta_{m, n}^{2} H_{m, n}}{4 \varphi_{n}}<\infty
\end{aligned}
$$

Then equation (1.1) is oscillatory.
Remark2.5. By choosing specific sequence $H_{m, n}$, we can derive severaloscillation criteria for (1.1).Let us consider the double sequence $H_{m, n}$ defined by

$$
H_{m, n}=(m-n)^{\lambda}, \lambda \geq 1, m \geq n \geq 0
$$

By Theorem 2.7, we get the following oscillation criteria for (1.1).
Corollary2.5. Assume that all the assumptions of Theorem 2.7 hold, except the condition (2.29) is replaced by

$$
\lim _{m \rightarrow \infty} \sup \frac{1}{m^{\lambda}} \sum_{n=0}^{m-1}\left((m-n)^{\lambda}\left(\frac{K}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{n, \xi}-\left(1+p^{\alpha}\right) \frac{\left(\frac{\Delta \rho_{n}}{\rho_{n+1}}-\frac{\lambda}{(m-n)}\right)^{2}}{4 \varphi_{n}}\right)\right)=\infty .
$$

Then equation (1.1) is oscillatory.

Remark2.6.If $\psi\left(x_{n}\right) \equiv 1, g(n, \xi) \equiv n^{\alpha}, q(n, \xi) \equiv q(n)$. Then we reduced to Theorems of Sakerin [14].
Remark2.7.If $\psi\left(x_{n}\right) \equiv 1, \alpha \equiv 1, g(n, \xi) \equiv n+1-l, q(n, \xi) \equiv q(n)$.Then we reduced to Theorems in [18].
Remark2.8.If $\psi\left(x_{n}\right) \equiv 1, \alpha \equiv 1, g(n, \xi) \equiv n-\tau, q(n, \xi) \equiv q(n)$.Then Theorem2.7 extended and improved Theorem 1 in [12].

By using the inequality in Lemma 2.3, we obtain the following result.

Theorem2.8. Let $0<\alpha \leq 1$. Further, assume that there exists a positive non decreasing sequence $\left\{\rho_{n}\right\}$, such that for any $n_{1} \in N$, there exists an integer $n_{2}>n_{1}$, with

$$
\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, 0}} \sum_{n=0}^{m-1}\left(K H_{m, n} \rho_{s} \sum_{\xi=a}^{b} Q_{s, \xi}-\left(1+p^{\alpha}\right) \frac{\vartheta_{m, n}^{2} H_{m, n}}{4 \varphi_{n}}\right)=\infty
$$

international journal of science and technology
Then equation (1.1) is oscillatory.
Proof. The proof is similar to that of Theorem 2.7 and hence the details are omitted.

Theorem 2.9.Assume that there exists a positive non decreasing sequence $\left\{\rho_{n}\right\}$, such that for any $n_{1} \in N$, there exists an integer $n_{2}>n_{1}$, with

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup \sum_{n=0}^{m-1}\left(H_{m, n} \Psi_{n}-\mu_{m, n}\right)=\infty \tag{2.32}
\end{equation*}
$$

where

$$
\delta_{n, \xi}:=\sum_{\xi=a}^{b} q(n, \xi)(1-p(g(n, \xi)))^{\alpha}
$$

Then every solution of equation (1.1) is oscillatory.
Proof. Assume that $\left\{x_{n}\right\}$ is a positive solution of equation (1.1) which does not tend to zero as $n \rightarrow \infty$.
From (2.1) and the fact that $x_{n} \leq z_{n}$, we see that

$$
\begin{equation*}
x(g(n, \xi)-\tau) \leq z(g(n, \xi)-\tau) \leq z(g(n, \xi)), n \in N\left(n_{2}\right), \xi \in N(a, b) \tag{2.33}
\end{equation*}
$$

Further, it is clear form $\left(\mathrm{A}_{3}\right)$ that

$$
g(n, \xi) \geq \min \{g(n, a), g(n, b)\} \equiv G_{n}, \xi \in N(a, b)
$$

Which in view of (2.1) leads to

$$
z(g(n, \xi)) \geq z\left(G_{n}\right), n \in N\left(n_{3}\right), \xi \in N(a, b) \text { forsomen }_{3} \geq n_{2}
$$

Using the above inequality together with(2.1),(2.33),($\left.\mathrm{A}_{3}\right)$ and $\left(\mathrm{A}_{4}\right)$ in equation (1.1)for $n \geq n_{3}$, we get

$$
\begin{aligned}
0 & =\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)+\sum_{\xi=a}^{b} q(n, \xi) f(x(g(n, \xi))) \\
& \geq \Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)+K \sum_{\xi=a}^{b} q(n, \xi)|x(g(n, \xi))|^{\alpha} \\
& =\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)+K \sum_{\xi=a}^{b} q(n, \xi)(z(g(n, \xi))-p(g(n, \xi)) x(g(n, \xi)-\tau))^{\alpha}
\end{aligned}
$$

international journal or science and technology

$$
\begin{align*}
& \geq \Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)+K \sum_{\xi=a}^{b} q(n, \xi)(1-p(g(n, \xi)))^{\alpha} z^{\alpha}(g(n, \xi)) \\
& \geq \Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)+K \sum_{\xi=a}^{b} q(n, \xi)(1-p(g(n, \xi)))^{\alpha} z^{\alpha}\left(G_{n}\right) \\
& =\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)+K z^{\alpha}\left(G_{n}\right) \sum_{\xi=a}^{b} q(n, \xi)(1-p(g(n, \xi)))^{\alpha} \\
& =\Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)+K z^{\alpha}\left(G_{n}\right) \delta_{n, \xi} . \tag{2.34}
\end{align*}
$$

Define the sequence ω_{n} by the generalized Riccati substitution

$$
\begin{equation*}
\omega_{n}:=\rho_{n} a_{n} \psi\left(x_{n}\right)\left[\frac{\left(\Delta z_{n}\right)^{\alpha}}{z^{\alpha}\left(G_{n}\right)}+\beta_{n}\right] \cdot n \geq n_{3} \tag{2.35}
\end{equation*}
$$

It follows that

$$
\Delta \omega_{n}=\Delta\left(\rho_{n} a_{n} \psi\left(x_{n}\right) \beta_{n}\right)+a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha} \Delta\left[\frac{\rho_{n}}{z^{\alpha}\left(G_{n}\right)}\right]+\frac{\rho_{n} \Delta\left(a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}\right)}{z^{\alpha}\left(G_{n}\right)}
$$

From (2.34) and(2.35), we have

$$
\begin{equation*}
\Delta \omega_{n} \leq-K \rho_{n} \delta_{n, \xi}+\rho_{n} \Delta\left(a_{n} \psi\left(x_{n}\right) \beta_{n}\right)+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-\rho_{n} \frac{a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha} \Delta\left(z^{\alpha}\left(G_{n}\right)\right)}{z^{\alpha}\left(G_{n+1}\right) z^{\alpha}\left(G_{n}\right)} \tag{2.36}
\end{equation*}
$$

First: we consider the case when $\alpha \geq 1$. By using the inequality([5, see P.39])

$$
x^{\alpha}-y^{\alpha} \geq \alpha y^{\alpha-1}(x-y) \text { for } x \neq y>0 \text { and } \alpha \geq 1 \text {, }
$$

We may write

$$
\Delta\left(z^{\alpha}\left(G_{n}\right)\right)=z^{\alpha}\left(G_{n+1}\right)-z^{\alpha}\left(G_{n}\right) \geq \alpha z^{\alpha-1}\left(G_{n}\right)\left(z\left(G_{n+1}\right)-z\left(G_{n}\right)\right)=\alpha z^{\alpha-1}\left(G_{n}\right) \Delta\left(z\left(G_{n}\right)\right), \alpha \geq 1 .
$$

Substituting in(2.36), we have

$$
\begin{align*}
& \Delta \omega_{n} \leq-K \rho_{n} \delta_{n, \xi}+\rho_{n} \Delta\left(a_{n} \psi\left(x_{n}\right) \beta_{n}\right)+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1} \\
& \tag{2.37}\\
&-\alpha \rho_{n} \frac{a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha} z^{\alpha-1}\left(G_{n}\right) \Delta\left(z\left(G_{n}\right)\right)}{z^{2 \alpha}\left(G_{n+1}\right)} .
\end{align*}
$$

From (2.12) and (2.37), we find
international journal of science and technology

$$
\begin{align*}
\Delta \omega_{n} \leq-K \rho_{n} \delta_{n, \xi}+\rho_{n} \Delta\left(a_{n} \psi\left(x_{n}\right) \beta_{n}\right)+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1} \\
-\alpha \rho_{n} \frac{a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha}}{z^{\alpha}\left(G_{n+1}\right)} \frac{z^{\alpha-1}\left(G_{n}\right)}{z^{\alpha}\left(G_{n+1}\right)} \frac{\left(a_{n} \psi\left(x_{n}\right)\right)^{1 / \alpha} \Delta z_{n}}{\left(a\left(G_{n}\right) \psi\left(x\left(G_{n}\right)\right)\right)^{1 / \alpha}} \\
=-K \rho_{n} \delta_{n, \xi}+\rho_{n} \Delta\left(a_{n} \psi\left(x_{n}\right) \beta_{n}\right)+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-\alpha \rho_{n} R_{n}\left(\frac{a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha}}{z^{\alpha}\left(G_{n+1}\right)}\right)^{\frac{\alpha+1}{\alpha}} . \tag{2.38}
\end{align*}
$$

Second: we consider the case when $0<\alpha<1$. By using the inequality

$$
x^{\alpha}-y^{\alpha} \geq \alpha x^{\alpha-1}(x-y) \text { for } x \neq y>0 \text { and } 0<\alpha<1 \text {, }
$$

We may write

$$
\Delta\left(z^{\alpha}\left(G_{n}\right)\right)=z^{\alpha}\left(G_{n+1}\right)-z^{\alpha}\left(G_{n}\right) \geq \alpha z^{\alpha-1}\left(G_{n+1}\right)\left(z\left(G_{n+1}\right)-z\left(G_{n}\right)\right)=\alpha z^{\alpha-1}\left(G_{n+1}\right) \Delta\left(z\left(G_{n}\right)\right), 0<\alpha<1 .
$$

Substituting in(2.36), we have

$$
\Delta \omega_{n} \leq-K \rho_{n} \delta_{n, \xi}+\rho_{n} \Delta\left(a_{n} \psi\left(x_{n}\right) \beta_{n}\right)+\frac{\Delta \rho_{n}}{\rho_{n+1}} \omega_{n+1}-\alpha \rho_{n} \frac{a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha} z^{\alpha-1}\left(G_{n+1}\right) \Delta\left(z\left(G_{n}\right)\right)}{z^{2 \alpha}\left(G_{n+1}\right)} .
$$

From (2.12) and by $\operatorname{Lemma}(2.1)$, since $a_{n} \psi\left(x_{n}\right)\left(\Delta z_{n}\right)^{\alpha}$ is decreasing sequence, we have

$$
\begin{equation*}
-\alpha \rho_{n} \frac{a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha} z^{\alpha-1}\left(G_{n+1}\right) \Delta\left(z\left(G_{n}\right)\right)}{z^{2 \alpha}\left(G_{n+1}\right)} \leq-\alpha \rho_{n} R_{n}\left(\frac{a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha}}{z^{\alpha}\left(G_{n+1}\right)}\right)^{\frac{\alpha+1}{\alpha}} . \tag{2.39}
\end{equation*}
$$

Thus, we again obtain (2.38). However, from (2.35) we see that

$$
\begin{equation*}
\left(\frac{a_{n+1} \psi\left(x_{n+1}\right)\left(\Delta z_{n+1}\right)^{\alpha}}{z^{\alpha}\left(G_{n+1}\right)}\right)^{\frac{\alpha+1}{\alpha}}=\left(\frac{\omega_{n+1}}{\rho_{n+1}}-a_{n+1} \psi\left(x_{n+1}\right) \beta_{n+1}\right)^{1+\frac{1}{\alpha}} . \tag{2.40}
\end{equation*}
$$

Then, by using the inequality([7, see $p .534]$)

$$
(v-u)^{1+\frac{1}{\alpha}} \geq v^{1+\frac{1}{\alpha}}+\frac{1}{\alpha} u^{1+\frac{1}{\alpha}}-\left(1+\frac{1}{\alpha}\right) u^{\frac{1}{\alpha}} v, \quad \alpha=\frac{o d d}{o d d} \geq 1,
$$

we may write equation (2.40) as follows

$$
\left(\frac{\omega_{n+1}}{\rho_{n+1}}-a_{n+1} \psi\left(x_{n+1}\right) \beta_{n+1}\right)^{1+\frac{1}{\alpha}} \geq\left(\frac{\omega_{n+1}}{\rho_{n+1}}\right)^{1+\frac{1}{\alpha}}+\frac{\left(a_{n+1} \psi\left(x_{n+1}\right) \beta_{n+1}\right)^{1+\frac{1}{\alpha}}}{\alpha}
$$

EXPERIMENT

InTERNATIONAL JOURNAL OF SCIENGE AND TECHNOLOGY

$$
-\frac{\left(1+\frac{1}{\alpha}\right)\left(a_{n+1} \psi\left(x_{n+1}\right) \beta_{n+1}\right)^{\frac{1}{\alpha}}}{\rho_{n+1}} \omega_{n+1}
$$

Substituting back in(2.38), we have

$$
\begin{align*}
\Delta \omega_{n} \leq-K \rho_{n} \delta_{n, \xi}+\rho_{n} \Delta\left(a_{n} \psi\left(x_{n}\right) \beta_{n}\right)- & \rho_{n} R_{n}\left(a_{n+1} \psi\left(x_{n+1}\right) \beta_{n+1}\right)^{1+\frac{1}{\alpha}} \\
& +\left(\Delta \rho_{n}+\alpha \rho_{n} R_{n}\left(1+\frac{1}{\alpha}\right)\left(a_{n+1} \psi\left(x_{n+1}\right) \beta_{n+1}\right)^{\frac{1}{\alpha}}\right) \frac{\omega_{n+1}}{\rho_{n+1}}-\left(\frac{\alpha \rho_{n} R_{n}}{\rho_{n+1}^{1+\frac{1}{\alpha}}}\right) \omega_{n+1}^{1+\frac{1}{\alpha}} \tag{2.41}
\end{align*}
$$

Thus,

$$
\Psi_{n} \leq-\Delta \omega_{n}+\frac{\eta_{n}}{\rho_{n+1}} \omega_{n+1}-\left(\frac{\alpha \rho_{n} R_{n}}{\rho_{n+1}^{1+\frac{1}{\alpha}}}\right) \omega_{n+1}^{1+\frac{1}{\alpha}} . \quad n \geq k
$$

Therefore, we have

$$
\sum_{n=k}^{m-1} H_{m, n} \Psi_{n} \leq-\sum_{n=k}^{m-1} H_{m, n} \Delta \omega_{n}+\sum_{n=k}^{m-1} \frac{\eta_{n} H_{m, n}}{\rho_{n+1}} \omega_{n+1}-\sum_{n=k}^{m-1}\left(H_{m, n} \frac{\alpha \rho_{n} R_{n}}{1+\frac{1}{\alpha}}\right) \omega_{n+1}^{1+\frac{1}{\alpha}}
$$

which yields after summing by parts

$$
\sum_{n=k}^{m-1} H_{m, n} \Psi_{n} \leq H_{m, k} \omega_{k}+\sum_{n=k}^{m-1} \Delta_{2} H_{m, n} \omega_{n+1}+\sum_{n=k}^{m-1} \frac{\eta_{n} H_{m, n}}{\rho_{n+1}} \omega_{n+1}-\sum_{n=k}^{m-1}\left(H_{m, n} \frac{\alpha \rho_{n} R_{n}}{\rho_{n+1}^{1+\frac{1}{\alpha}}}\right) \omega_{n+1}^{1+\frac{1}{\alpha}}
$$

Hence

$$
\sum_{n=k}^{m-1} H_{m, n} \Psi_{n} \leq H_{m, k} \omega_{k}+\sum_{n=k}^{m-1}\left(\frac{\eta_{n} H_{m, n}}{\rho_{n+1}}-h_{m, n} \sqrt{H_{m, n}}\right) \omega_{n+1}-\sum_{n=k}^{m-1}\left(\frac{\alpha \rho_{n} R_{n} H_{m, n}}{1+\frac{1}{\alpha}}\right) \omega_{n+1}^{1+\frac{1}{\alpha}}
$$

Using the inequality

$$
B u-A u^{1+\frac{1}{\alpha}} \leq \frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}} \frac{B^{1+\alpha}}{A^{\alpha}}
$$

for $A=\frac{\alpha \rho_{n} R_{n} H_{m, n}}{\rho_{n+1}^{1+\frac{1}{\alpha}}}$ and $B=\left(\frac{\eta_{n} H_{m, n}}{\rho_{n+1}}-h_{m, n} \sqrt{H_{m, n}}\right)$, we obtain

International journal OF science and technology

$$
\sum_{n=k}^{m-1}\left(H_{m, n} \Psi_{n}-\mu_{m, k}\right) \leq H_{m, k} \omega_{k} \leq H_{m, 0}\left|\omega_{k}\right|
$$

which implies

$$
\sum_{n=0}^{m-1}\left(H_{m, n} \Psi_{n}-\mu_{m, k}\right) \leq H_{m, 0}\left\{\sum_{n=0}^{k-1} \Psi_{n}+\left|\omega_{k}\right|\right\}
$$

Hence,

$$
\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, 0}} \sum_{n=0}^{m-1}\left(H_{m, n} \Psi_{n}-\mu_{m, k}\right)<\infty
$$

which is contrary to (2.32). This completes the proof of Theorem 2.9 .

Corollary 2.6.Assume that all the assumptions of Theorem 2.9 hold, except the condition (2.32) is replaced by

$$
\begin{gathered}
\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, 0}} \sum_{n=0}^{m-1} H_{m, n} \Psi_{n}=\infty \\
\lim _{m \rightarrow \infty} \sup \frac{1}{H_{m, 0}} \sum_{n=0}^{m-1} \mu_{m, k}<\infty
\end{gathered}
$$

Then equation (1.1) is oscillatory.

Examples

In order to show the application of our results obtained in this paper, let us consider the following second order difference equation with distributed deviating arguments:

Example3.1.Consider the nonlinear delay difference equation

$$
\begin{equation*}
\Delta\left(\frac{n}{n+1} \Delta x_{n}\right)+\sum_{\xi=0}^{1} \frac{\lambda \xi}{n^{2}} x_{n}\left(\xi+x_{n}^{2}\right)=0, n \geq 1 \tag{3.1}
\end{equation*}
$$

where $a_{n}=\frac{n}{n+1}, \psi\left(x_{n}\right)=1, p_{n}=0, \alpha=1, q(n, \xi)=\frac{\lambda \xi}{n^{2}}$.If we take $\rho_{n}=n, K=1$ then we have $R_{l}=\frac{n+1}{n}$,

$$
\sum_{l=n_{0}}^{n}\left(\frac{K \rho_{l}}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{l, \xi}-\frac{\left(1+p^{\alpha}\right)((l+1)-l)^{\alpha+1}}{(\alpha+1)^{\alpha+1}\left(l R_{l}\right)^{\alpha}}\right)
$$

international journal or science and technology

$$
=\sum_{l=1}^{n}\left(\frac{\lambda l}{l^{2}}-\frac{l}{4 l(l+1)}\right)=\sum_{l=1}^{n}\left(\frac{\lambda}{l}-\frac{1}{4(l+1)}\right) \geq \sum_{l=1}^{n}\left(\frac{4 \lambda-1}{4 l}\right) \rightarrow \infty
$$

as $n \rightarrow \infty$ if $\lambda>\frac{1}{4}$. Thus Theorem 2.1 asserts that every solution of (3.1) is oscillatory when $\lambda>\frac{1}{4}$.

Example 3.2.Consider the linear neutral delay difference equation

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+p x_{n-1}\right)+\sum_{\xi=0}^{1} \frac{\lambda \xi}{n^{2}} x_{n+\xi}=0, \mathrm{n} \geq 1 \tag{3.2}
\end{equation*}
$$

wherea $_{\mathrm{n}}=\psi\left(\mathrm{x}_{\mathrm{n}}\right)=1, \mathrm{p}_{\mathrm{n}}=\mathrm{p}>0, \alpha=1, \tau=1, \mathrm{q}(\mathrm{n}, \xi)=\frac{\lambda \xi}{\mathrm{n}^{2}}$. If we take $\rho_{n}=n, K=1=n$, then, we have $R_{l}=1$,

$$
\sum_{l=n_{0}}^{n}\left(\frac{K \rho_{l}}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{l, \xi}-\frac{\left(1+p^{\alpha}\right)((l+1)-l)^{\alpha+1}}{(\alpha+1)^{\alpha+1}\left(l R_{l}\right)^{\alpha}}\right)=\sum_{l=1}^{n}\left(\frac{\lambda l}{l^{2}}-\frac{(1+p)}{4 l}\right)=\sum_{l=1}^{n}\left(\frac{4 \lambda-(1+p)}{4 l}\right)=\infty
$$

If $\lambda>(1+p)$.By Corollary 2.1, every solution of (3.2) oscillatorywhen $\lambda>(1+p)$.

Example3.3.Consider the nonlinear delay difference equation

$$
\begin{equation*}
\Delta\left(n^{2} \Delta x_{n}\right)+\sum_{\xi=0}^{1} \lambda \xi x_{n}=0, \quad n \geq 1 \tag{3.3}
\end{equation*}
$$

where $a_{n}=n^{2}, \psi\left(x_{n}\right)=1, p_{n}=0 . \alpha=1, q(n, \xi)=\lambda \xi$.If we take $\rho_{n}=n, K=1$, then we have $R_{l}=\frac{1}{l^{2}}$,

$$
\sum_{l=n_{0}}^{n}\left(K \rho_{l} \sum_{\xi=a}^{b} Q_{l, \xi}-\frac{((l+1)-l)^{2}}{(\alpha+1)^{\alpha+1}\left(l R_{l}\right)^{\alpha}}\right)=\sum_{l=1}^{n}\left(\lambda l-\frac{l^{2}}{4 l}\right)=\sum_{l=1}^{n} \frac{(4 \lambda-1) l}{4} \rightarrow \infty
$$

as $n \rightarrow \infty$ if $\lambda>\frac{1}{4}$.By Theorem 2.2 every solution of (3.3) is oscillatory when $\lambda>\frac{1}{4}$.

Example3.4.Consider the nonlinear neutral difference equation

$$
\begin{equation*}
\Delta\left(\frac{1}{n^{3}}\left(\Delta\left(x_{n}+p x_{n-1}\right)\right)^{3}\right)+\sum_{\xi=0}^{1} \frac{\lambda \xi}{n^{3}} x_{n-1}^{3}=0, \quad n \geq 1 \tag{3.4}
\end{equation*}
$$

EXPERIMENT

INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY where $a_{n}=\frac{1}{n^{3}}, \psi\left(x_{n}\right)=1, p_{n}=p>0, \alpha=3, q(n, \xi)=\frac{\lambda \xi}{n^{3}}$.If we take $\rho_{n}=n^{2}, K=1$, then, we have $J_{l}=l^{3}$,

$$
\lim _{n \rightarrow \infty} \sup \sum_{l=n_{0}}^{n-1}\left(\frac{K \rho_{l}}{2^{\alpha-1}} \sum_{\xi=a}^{b} Q_{l, \xi}-\frac{\left(1+p^{\alpha}\right)}{2^{3-\alpha}} \frac{\left(\Delta \rho_{l}\right)^{2}}{\rho_{l} J_{l}}\right)=\lim _{n \rightarrow \infty} \sup \sum_{l=1}^{n-1}\left(\frac{\lambda}{4 l}-\frac{4\left(1+p^{3}\right)}{(l-1)^{3}}\right)=\infty
$$

if $\lambda>0$. By Theorem 2.5 every solution of (3.4) is oscillatory when $\lambda>0$.

REFERENCES

1. R.P. Agarwal,Difference equations and inequalities, Theory, Methods and Applications,second ed., Marcel Dekker, New York, 2000, Revised and Expanded.
2. R.P. Agarwal, P.J.Y. Wong, Advanced topics in difference equations, Kluwer AcademicPublishers, 1997.
3. R.P. Agarwal, M.M.S. Manuel, E. Thandapani, Oscillatory and nonoscillatory behavior ofsecond-order neutral delay difference equations, Math. Comput.Model., 24 (1996) 5-11.
4. R.P. Agarwal, M.M.S. Manuel, E. Thandapani, Oscillatory and nonoscillatory behavior ofsecond-order neutral delay difference equations II, Appl. Math. Lett., 10 (1997) 103-109.
5. G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, second ed., Cambridge Univ. Press,1952.
6. T. H. Hilderbrandt, Introduction to the Theory of Integration, Academic Press, New York, 1963.
7. J. Jian, X. Li, Oscillationof second-order nonlinear neutral difference equations,Appl. Math. Comp., 135 (2003) 531-540.
8. B. Karpuz, R. N. Rath and S. K. Rath, On oscillation and asymptotic behavior of higher order functional difference equation of neutral type, Int. J. Diff. Eqn., 4(2009) 69-96.
9. B. Karpuz, O. Ocalan and S. Ozturk, Comparison theorems on the oscillation and asymptotic behavior of higher-order neutral differential equation, Glasgow Math. J., 52(2010) 107-114.
10. B.S. Lalli, B.G. Zhang, On existence of positive solutions and bounded oscillations for neutraldifference equations, J. Math. Anal. Appl., 166 (1992) 272-287.
11. J.W. Lou, D.D. Bainov, Oscillatory and asymptotic behavior of second-order neutraldifference equations with maxima, J. Comp. Appl. Math., 131 (2001) 333-341.
12. H. J. Li and C. C. Yeh, Oscillatory criteria for second orderneutral delay difference equations, Comp. Math. Appl., pp, (1998) 123-132.
13. M. Migda, Oscillation criteria for higher order neutral difference equations with oscillating coefficient, Fasc. Math., 44(2010) 8593.
14. S.H. Saker, New oscillation criteria for second order nonlinearneutral delay difference equations, Appl. Math. Comp., 142 (2003) 99-111.
15. S.H. Saker, Oscillation theorems for second order nonlinear delay difference equations, Per. Math. Hungarica.,pp,47 (2003) 201$213 . \mathrm{s}$
16. Sh. Salem, K. R. Raslam, Oscillation of some second order damped difference equations, IJNS.,, pp ,5(2008) 246-254.
17. Z. Szafranski, B. Szmanda, Oscillation of some difference equations, Fasc. Math., 28 (1998)149-155.
18. E. Thandapani,Z. Liu, R. Arul and P. S Raja, Oscillation an asymptotic behavior of secondorder difference equation, with nonlinear neutral terms, Appl. Math.,4(2004)59-67.
19. Z. Zhang, J. Chen, C. Zhang, Oscillation of solutions for second-order nonlinear differenceequations with nonlinear neutral term, Comp. Math. Appl., 41 (2001) 1487-1494.

E. M. Elabbasy ${ }^{1}$, M. Y. Barsom ${ }^{2}$ and F. S. AL-dheleai ${ }^{3}$

${ }^{1,2}$ Department ofMathematics, Faculty of Science, Mansoura University, Mansoura, Egypt.
${ }^{1}$ E-mail: emelabbasy@mans.edu.eg.
${ }^{3}$ Department of Mathematics, Faculty of Education and Languages,
Amran University,Amran,Yamen.
${ }^{3}$ E-mail: faisalsaleh69@yahoo.com

