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APPLICATIONS OF DIFFERENTIAL SUBORDINATION TO CERTAIN SUBCLASSES OF 
MEROMORPHICALLY UNIVALENT FUNCTIONS WITH DIFFERENTIAL OPERATOR 

ABSTRACT 

By making use of the principle of differential subordination, we investigate several subordination and convolution properties of certain 
subclasses of meromorphic univalent functions which are defined here by means of a differential operator. We also indicate relevant 
connections of the various results presented in this paper with those obtained in earlier works. 
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1. Introduction and Definitions 

Let m denote the class of functions of the form :  
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which are analytic in the punctured unit disc  C:{  zzU   and  }10  z  , with a simple pole at the origin. 

If )(zf  and )(zg are analytic in U , we say that )(zf  is subordinate to )(zg , written symbolically as follows: 

),()()(or        in  UzzgzfUgf   

if there exists a Schwarz function )(zw , which (by definition) is analytic in ,U  with  

)(1)( and 0)0( Uzzww   

such that    
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If )(zg  is univalent in  U , we have the following equivalence relationship holds true: (cf., e.g., [5]; see also [6,p.4]): 
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For functions ,)( mzf    given by (1.1), and  mzg )(  defined by 
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we define the Hadamard product (or convolution) of )(zf  and )(zg   by 
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In a recent paper, Frasin [1] defined the following differential operator: 
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Note that for  ,1 m  we have the operator )(zfI n  introduced and studied by Frasin and Darus [2]. 

It easily verified from (1.4) that 

.
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z
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Definition. For fixed parameters A and B  ),11(  AB   we say that a function  )(zf ,m  is in the class ),,,( BAn
m   

if it satisfies the following subordination condition: 
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In view of the definition of differential subordination, (1.6) is equvialent to the following condition: 
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For convenience, we write 

),,()1,21(  n
m

n
m   

where ),( n
m  denotes the class of functions in m  satisfying the following inequality 

).;10()))((( 2 UzzfIzR n    
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In this paper, we derive several subordination and convolution properties for the function class ),,( BAn
m  , which we have defined 

here by means of the differential operator  .fI n
  Relevant connections of the  various results presented in this paper with those 

obtained in earlier works are also pointed out. 

 
2. Preliminary Lemmas 
In proving our main results, we need each of the following lemmas. 

 

Lemma 1 (Miller and Mocanu [5]; see also [6]). 

Let the function  )(zh  be analytic and convex (univalent) in U with 1)0( h . Suppose also that the function )(z  given by 
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1
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is analytic in U. If 
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and )(z  is the best dominant of (2.2). 

with a view to stating a well-known result (Lemma 2 below), we denote by )(P  the class of functions )(z given by 

.......,1)( 2
21  zbzbz                                                       (2.3) 

which are analytic in U and satisfy the following inequality: 

).;10())(( UzzR    

Lemma 2 (cf., e.g., Pashkouleva [7]). Let the function ),(z  given by (2.3), be in the class )(P . Then 
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Lemma 3 (see [10]). For  ,1,0 21     

)).1)(1(21:()()()( 213321   PPP  

The result is the beast possible. 
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For real or complex numbers ba,  and c  ,...})2,1,0{:( 0  zc , the Gauss hypergeometric function is defined by 
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We note that the above series converges absolutely for Uz  and hence represents an analytic function in U  (see, for details, [11, 

chapter 14]). 

 Each of the identities (asserted by Lemma 4 below) is well-known (cf., e.g., [11, chapter 14]). 

Lemma 4. For real or complex parameters ba, and c  ),( 0
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3. The Main Subordination Theorems and The Associated Functional Inequalities 
 

Unless otherwise mentioned, we shell assume throughout the sequel that 

,0,11,  ABNm  and  }.0{0  NNn  

Theorem 1.  

Let the function )(zf  defined by (1.1) satisfy the following subordination condition: 
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where the function )(zQ given by 
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is the best dominant of (3.1). Furthermore, 
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The inequality in (3.2) is the best possible. 

Proof. Consider the function )(z defined by 

).())(()( 2 UzzfIzz n                                    (3.3) 

Then )(z  is of the form (2.1) and is analytic inU . Applying the identity (1.5) in (3.3) and differentiating the resulting equation with 

respect to z , we get 
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by change of variables followed by the use of the identities (2.4), (2.5) and (2.6) (with  1b   and  1 ac  ).This prove the 

assertion (3.1) of Theorem 1. 

Next, in order to prove the assertion (3.2) of Theorem 1, it suffices to show that 
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which is a positive measure on the closed interval [0,1], we get 
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Letting 1r  in the above inequality, we obtain the assertion (3.2) of Theorem 1. 

Finally, the estimate in (3.2) is the best possible as the function )(zQ  is the best dominant of (3.1). 

Putting  1   in Theorem 1, we get the following result 

Corollary 1.  

If mzf )(  satisfies 
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is the best dominant. Furthermore 
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The result is the beast possible. 

Remark.  

The result (asserted by corollary 1 above) when 0m  was also obtained by Patel and Sahoo[9] and Lashin 3]. 

For  0,1),10(21  mBA   and 3
1  

Corollary 1 yields the following result which obtained by Lashin [3] 

Corollary 2.  

If mzf )(  satisfies the following inequality  
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the result is best possible. 
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Theorem 2. 

If ),10()()(  n
mzf   then 
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The result is the best possible. 

Proof. We begin by writing 

).(     )()1())((2 UzzuzfIz n                              (3.6) 

Then, clearly, )(zu  is of the form (2.1), is analytic in U , and has a positive real part in  U . Making use of the identity (1.5) in (3.6) 

and differentiating the resulting equation with respect to z . we observe that 
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Now, by applying the following estimate [5]: 
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It is easily seen that the right- hand side of (3.8) is positive, provided that ,1Rr   where  1R   is given as in Theorem 2. This proves 

the assertion (3.5) of Theorem 2. 

In order to show that the bound  1R   is the best possible, we consider the function  mzf )(  defined by  

Noting that 
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we complete the proof of Theorem 2. 

Theorem 3.  
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is the best dominant of (3.10). Furthermore, 

  ),()))(((2 UzzfFIzR n                         (3.11) 

where 


























).0(
1

1

)0()
1

;1
1

;1,1()1)(1( 1
1

2

B
m

Az

B
B

B

m
FBz

B

A

B

A






  

The result is the best possible 

Proof. Setting 
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),()))((()( 2 UzzfFIzz n                                                 (3.12) 

we note that )(z  is of the form (2.1) and is analytic in U. Using the following operator identity: 

),)(()1()()))((( zfFIzfIzfFIz nnn
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in (3.12), and differentiating the resulting equation with respect to ,z we fined that 
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Now the remaining part of Theorem 3 follows by employing the techniques that we used in proving Theorem 1 above. 
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we note that )(zw  is analytic in U , with 
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Then, by applying the familiar Schwarz Lemma, we get 
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).(1)( Uzz   

Therefore, (3.14) leads us to 
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Making use of logarithmic differentiation in (3.15), we obtain 
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Now, by using the following known estimates [8] (see also [4]): 
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which is certainly positive, provided that 00 , RRr   being given as in Theorem 4. 
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Theorem 5.  

Let  ).2,1(11  jAB jj  If  each of the functions mj zf )( satisfies the following subordination condition: 
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By making use of the operator identity (1.5) in (3.20), we observe that 
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which, in view of the definition of )(zH  given already with (3.19), yields 
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Since  )()( 11  pz    and  ),()( 22  pz    it follows from Lemma 3 that 
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when  B1 B2 1,   we consider the functions ),2,1()(  jzf mj  which satisfy the hypothesis (3.18) of Theorem 5 and 

are defined by 
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Thus it follows from (3.22) and Lemma 4 that 
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which evidently completes the proof of Theorem 5. 

Theorem 6.  

If mzf )(  satisfies the following subordination condition: 
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where   is given as in Theorem 1. The result is the best possible 

Proof. Defining the function )(z  by 

),;()()( UzfzfzIz m
n                                       (3.24) 

we see that the function  )(z   is of the form (2.1) and is analytic in U. Using the identity (1.5) in (3.24) and differentiating the 

resulting equation with respect to z , we find that 
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Now, by following the lines of proof of Theorem 1, and using the elementary inequality: 

),;0))(())(()( /1/1 NqwRwRwR qq   

we arrive at the result asserted by Theorem 6. 
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