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TSUKAMOTO FLC MODELING OF A CRISP MATHEMATICAL EEG 

SIGNALS MODEL AND ITS GENERALIZATION  
Abstract 

In this paper we consider a system (plant) of “Hudgkin - Huxley classical mathematical model of EEG signals” as an 

input-output map y = f(x). We assume that the internal structure of this system is unknown, but qualitative 

knowledge about the behavior is available in the form of "if - then" rules. We construct a mathematical description 

of the system, based on available information, so that it will represent faithfully the true system of “Tsukamoto 

Fuzzy Control Model”. The construction process consist of translating linguistic rules into mathematical expression 

using fuzzy sets and fuzzy logic using the technique of Tsukamoto fuzzy inference rules so that  desired output 

result is achieved. 

Further we generalize this model by making ±10%, ±20%, etc. variations in the input sensor readings and achieve 

the expected output results. 

The obtained Tsukamoto fuzzy controlled model is shown to be within the class of designs capable of approximating 

the true input- output relation to the required degree of accuracy. 

2000 Mathematics Subject Classification: Primary: 94C42, Secondary: 68T27, 68T37. 

 

Key words: Mathematical model of EEG signals, inputs – output linguistic variables, Tsukamoto fuzzy rule base, 

weighted average formula. 

 

1. INTRODUCTION 

A conventional PID Controller: A conventional (classical) proportional-integral-derivative (PID) controller of 

Hodgkin-Huxley mathematical model of EEG signal is based on a rigorous mathematical model of some linear 

process. It reads a sensor value, applies mathematical model and produces desired output following the 

mathematical algorithm.  

It is to be noted that the conventional mathematical EEG signal model is deceptively complex. It run up against 

computationally complex problems that they simply could not address without consuming prohibitive amount of 

computer power - if they address them at all. To overcome all such inconveniences, the need of Tsukamoto Fuzzy 

Controlled Model is essential. 

  

Tsukamoto Fuzzy logic controller (FLC): It serves the same function as the conventional PID controller. PID 

manages a complex control surface by reading sensor information, executing a mathematical model and making 

changes to the device actuators. However the fuzzy logic controller manages this complex control surface through 

heuristic rather than a mathematical model.  

 

In the "Tsukamoto fuzzy reasoning method" the consequent part of each fuzzy 'if - then' rule is represented by a 

fuzzy set with a monotonic membership function as shown in Figure 1. This method is a special case of Mamdani 

(both use fuzzy if - then rules whose antecedent part as a fuzzy singleton) and Takagi-Sugeno-Kang (TSK) (both use 

inference analogous to the weighted sum to aggregate the conclusion of multiple rules in to a final conclusion) direct 

fuzzy reasoning methods. Tsukamoto fuzzy model like a classical EEG signal model is based on the inputs (I/Ps) 

process and output (O/P) flow concepts. It requires fewer rules than classical EEG signal model and these rules 

(formed using linguistic variables) are closer to the knowledge which is expressed in natural language. Because the 

practical merits of Tsukamoto fuzzy model have been recognized over classical EEG signal model, the Tsukamoto 

method have been applied very effectively to provide O/P result which is as good as the O/P result of classical EEG 
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signal model.  

 

 
𝒙𝟎𝐲𝟎𝛼𝒛𝟎 

 Figure 1:Tsukamoto fuzzy reasoning method representing monotonic consequent part and 𝜶 is the 

minimum matching degree between 𝑨(𝒙𝟎)𝒂𝒏𝒅 𝑩 𝒚𝟎 . 

 

 

2 CLASSICAL MATHEMATICAL MODEL OF EEG SIGNALS: This EEG signal model is based on the 

Hodgkin - Huxley Nobel prize winning model for the squid axon published in 1952[6]. 

2.1) Mechanism: A nerve axon may be stimulated and the activated sodium (𝑁𝑎+) and potassium (𝑘+) channels 

produced in the vicinity of the cell membrane may lead to the electrical excitation of the nerve axon. Prominently, 

the electrical excitation arises: (a) from the effect of membrane potential on the movement of ions, and (b) from 

interaction of the potential with the opening and closing of voltage activated membrane channels. The membrane 

potential increases when the membrane polarized with a net negative charges lining in the inner surface and equal 

but apposite net positive charge on the outer surface. This potential (E) may be related to the amount of electrical 

charge (Q), by the relation, 

                                                            𝐸  =    
𝑄

𝑐𝑚
  ,                                                                        (1) 

where E, electrical potential (or membrane potential or electrical force) is measured in the unit of volts; 𝑄, electrical 

charge is measured in terms of coulombs/𝑐𝑚2 ; and Cm, is the measure of capacity of membrane in units of 

farad/𝑐𝑚2 . 

In practice, in order to model the action potential (APs) the amount of charge  𝑄+  on the inner surfaces 

(and 𝑄− on the outer surface) of the cell membrane has to be mathematically related to the stimulating current 

(𝐼𝑠𝑡𝑒𝑎𝑚 ) flowing into the cell through the stimulating electrodes. The Hodgkin-Huxley model is shown in Figure 2. 

 

 

 
 

Figure 2: Hodgkin-Huxley excitation model. 

In this Figure 2 membrane current (
m e m b

I ) is the result of positive charges flowing out of cell. The current 

consists of three currents namely, sodium (Na), potassium (K) and leak currents (the leak current is due to fact that 
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the inner and outer Na and K ions are not exactly equal). 

Hodgkin and Huxley estimated the activation and inactivation functions for the Na and K currents and derived a 

mathematical model to describe an action potential AP similar to that of a giant squid. The model is neuron model 

that usages voltage gated channels. This model describes the change in membrane potential (E) with respect to time. 

The overall membrane current is the sum of capacity current and ionic current as follows, 

                                        𝐼𝑚𝑒𝑚𝑏 = 𝑐𝑚
𝑑𝐸

𝑑𝑡
  + 𝐼𝑖……………..         (2) 

Where 
i

I
,
 is the ionic current as indicated in Figure 2. It consists of the sum of three individual components as 

follows, 

                                      𝐼𝑖   =   𝐼𝑁𝑎+  𝐼𝑘+   𝐼𝑙𝑒𝑎𝑘                     ……………..         (3) 

where𝐼𝑁𝑎 ,
 can be related to the maximal conductance 𝑔 𝑁𝑎 ; activation variable  𝑎𝑁𝑎 ; inactivation variable 𝑁𝑎  and 

driving force (𝐸 − 𝐸𝑁𝑎
)through 

N a
I  =𝑔 𝑁𝑎𝑁𝑎  𝐸 −  𝐸𝑁𝑎

 
3

N aa        ………                                                 (4) 

Similarly 𝐼𝑘  and 𝐼𝑙𝑒𝑎𝑘  can be described. 

The change in the variables 𝑎𝑁𝑎 , 𝑎𝑘   and 𝑁𝑎  vary from  0 to 1 (time in ms) according to the following equations: 
𝑑

𝑑𝑡
 𝑎𝑁𝑎    =  𝜆𝑡  𝛼𝑁𝑎   𝐸  1 − 𝑎𝑁𝑎   − 𝛽 𝑁𝑎  𝐸 𝑎 𝑁𝑎  ………                  (5) 

where, 𝛼 𝐸  and β 𝐸  are forward and backward rate functions respectively and 𝜆𝑡 is a temperature dependent 

factor.   

Similarly, 
𝑑

𝑑𝑡
 𝑁𝑎    and 

𝑑

𝑑𝑡
 𝑎𝑘    can be described. The forward and backward parameters were empirically 

estimated by Hodgkin and Huxley as follows: 

       𝛼𝑁𝑎  𝐸 =
3.5+0.1𝐸

1−𝑒− 3.5+0.1𝐸 ,      𝛽𝑁𝑎  𝐸 = 4𝑒
− 𝐸+60 

80  , etc.       …………           (6) 

As stated in the simulator for neural network and action potential (SNNPA) 𝑙𝑖𝑡𝑒𝑟𝑎𝑡𝑢𝑟𝑒[6]. The parameters 

( )E  and ( )E  have been converted from the original Hodgkin-Huxley version to a version agreeing with 

physiological practice taking depolarization of the membrane as positive. Resting potential has been shifted to -

60mV (from original 0mV). A simulated action potential is illustrated in Figure 1. For this model, the parameters are 

set to be, 𝑐𝑚 =1.1µ𝐹 𝑐𝑚2 ,𝑔 𝑁𝑎  = 100𝑚𝑠 𝑐𝑚2 , 𝑔 𝑘 = 35 𝑚𝑠 𝑐𝑚2 ,  𝑔 𝑙 = 0.35 𝑚𝑠 𝑐𝑚2 ,𝐸𝑁𝑎= 60mV. 

Using the values   of  𝑐𝑚 ,  𝑔 𝑘, 𝑔𝑙  etc in the above related equations (1) - (6), one gets 

𝐼𝑚𝑒𝑚𝑏 = 80µ𝐴/𝑐𝑚2,         ………….                                                             (7)               

which is shown in Figure 3of neuron model.  

 

2.2) Brief algorithm of EEG signal modeling: The information transmitted by nerve in the central nerves system 

(CNS) is called an action potential (AP). APs are caused by an exchange of ions across the neuron membrane and 

are a temporary change in the membrane potential that transmitted along the axon. As soon as the stimulus strength 

goes above the threshold, an action potential appears and travels down the nerve. The membrane potential 

depolarizes (becomes more positive) producing spike. After the peak of the spike (having sodium (+) channels 

close and the potassium (+) open), the membrane potential repolarizes (becomes more negative). The potential 

becomes more negative than the resting potential is called hyper polarization and return to the normal called 

resting potential as shown in Figure 3. It is important to note that the action potential of the most nerves system last 

up to 5 to 10 ms. 
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Figure 3: A single AP in response to a transient stimulation based on Hodgkin –Huxley model. The initiated 

time is t = 0.4ms and the   injected current i.e.𝑰𝒎𝒆𝒎𝒃 = 80µ𝑨/𝒄𝒎𝟐 for duration of 0.1ms. 

 

This model is complex due to imprecise linguistic I/P-variables and coupling of various parameters. The technique 

of Tsukamoto-fuzzy controllers on EEG signal modeling is more convenient under these conditions. 

 

3. TSUKAMOTO FUZZY CONTROLLER ON EEG SIGNAL MODEL:The system of the classical EEG signal 

model consist of two fuzzy I/ Ps   intensity (I) and duration (τ) as the stimulator for dendrites of the nerve cell and 

one fuzzy o/p namely membrane current ( 𝐼𝑚𝑒𝑚𝑏 ) to be computed. A general scheme for controlling a desired value 

by the technique of Tsukamoto - FLC over the classical EEG signal model is shown by block diagram as in Figure 

3. 

 

 

 

Figure 3: A general scheme of Tsukamoto - FLC for controlling desired value. 

To execute Tsukamoto fuzzy model the following steps are required: 

(a) Construction of fuzzy sets and Fuzzification; 

(b) Formation of fuzzy inference rules; 

(c) Measurement of the adaptability and infer the conclusions; 

(d) Aggregate the individual conclusion to obtain the overall conclusion.      

Now we will see execution of these steps one by one as follows: 

(a) Construction of fuzzy setsand Fuzzification: After identifying the relevant I/Ps and O/p variables of 

the classical controller, our first step in designing the FLC should be to characterize the range of values for the I/Ps 

and O/P variables. Since the duration of the action potential of a nerve system in the classical controller is in 

the range of 5 to 10ms, so that we have chosen the range of values for the both I/P- variables: „intensity‟ and 

„duration‟ in the time interval of 0 to 10ms in FLC. And since final injected current in EEG signal model is, 

𝑰𝒎𝒆𝒎𝒃 = 80µ𝑨/𝒄𝒎𝟐, accordingly we have chosen range of values for O/P- variable „ membrane current‟ as 0 to 100 

µA /𝑐𝑚2  𝑖𝑛 𝐹𝐿𝐶 . Also we have to select meaningful linguistic states for each variable and express them by 

appropriate fuzzy sets. Accordingly it is assumed that the following seven linguistic states with their corresponding 

numerical descriptions are chosen for each of three variable: Negative Large(NL) ≈ “about and below 0.13”; 
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Negative Medium (NM) ≈ “about 0.26”;  Negative  Slow(NS) ≈ “about 0.39”; Almost zero(AZ) ≈ “about 0.52”; 

Positive Slow(PS) ≈ “about 0.65”; Positive Medium(PM) ≈ “about 0.78” and Positive Large(PL) ≈ “about 0.91”. 

Representing these seven linguistic states of I/P and O/P linguistic variables by triangular shape fuzzy 

numbers as in Figure 5 and Figure 6 respectively. 

 

 
Figure 5: Fuzzy sets and decomposition for I/P variable intensity/ duration over the range     [0, 1]-is the time 

in ms. 

Next, the O/P-linguistic variable membrane current is shown in Figure 6. 

 
Figure 6: Fuzzy sets and decomposition for O/P variable „membrane current‟ (𝐼𝑚𝑒𝑚𝑏 ) over the range [0,100] is the 

injected current in µ𝐴 𝑐𝑚2 . 

 

Fuzzification of I/P-variables:-The main purpose of the fuzzification is to interpret measurement of I/P -variables 

(each expressed by the fuzzy approximation of the respective real number) and to express the associated 

measurement uncertainties. For an illustration. A fuzzification process (function) applied to the I/P variable 

„intensity‟ (I), is represented by 𝑓𝐼 .Then the fuzzification function has the form𝑓𝐼 :  0,1 → 𝑅, where R denote the set 

of all fuzzy numbers. Then  𝑓𝐼 𝑥0 = 0.40  is a fuzzy number chosen by  𝑓𝐼 as a fuzzy approximation of the 

measurement (sensor reading) intensity (I) at 𝑥0 = 0.40. 

The computation of fuzzy membership valuesfrom Figure 5, for which 𝑓𝐼 𝑥0 = 0.40 ≠  0, is as below and shown in 

Figure 7. 

              NS (0.40sec)=
0.40−0.52

0.39−0.52
=

0.12

0.13
= 0.92;    AZ 0.40𝑠𝑒𝑐 =

0.40−0.39

0.52−0.39
=

0.01

0.13
= 0.08. 
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Remaining all fuzzy membership values (from Figure 4) are zero such as, 

 N L (0.40) = N M (0.40) = P S (0.40) = P M (0.40) = PL (0.40) = 0. 

 

 
Figure (7)                                                Figure(8) 

 

Figures (7 and 8): Fuzzification of I/P variables intensity for 𝑥0 = 0.40 and duration 𝑦0 = 0.10 is shown in Figure 7 

and Figure 8 respectively.  

 

The computation of fuzzy membership values from Figure 6 for which 𝑓𝜏 𝑦0 = 0.10 ≠  0, is as below and their 

Pictorial representation is as shown in Figure 8. 

The membership values for fuzzy sets NL are computed as, 

𝑁𝐿 0.10   = 1. 

All other remaining membership values from Figure 6 are zero. Such as NS (0.10) = AZ (0.10) = PL (0.10) = PM 

(0.10) = PS (0.10) = NM (0.10) = 0. This shows that only one rule fires, namely NL (0.10) = 1. 

 

(b)Formation of fuzzy inference rules: - The knowledge pertains to the given control problem is formulated in 

terms of a set of fuzzy inference rules. To elicit Tsukamoto fuzzy inference rules, for the I/P-variables intensity (I), 

duration (τ) and O/P -variable membrane current (𝐼𝑚𝑒𝑚𝑏 ) in our control problem, the rule base have the canonical 

form, 

“If I = 𝐴𝑖 and τ   = 𝐵𝑖 then  𝐼𝑚𝑒𝑚𝑏 = 𝐶𝑖”, I = 1, 2… n         .  .  .  .  (8) 

where  𝐴𝑖 , 𝐵𝑖 and 𝐶𝑖 are fuzzy numbers chosen from the set of fuzzy numbers (on the domains X, Y & Z- axes 

respectively)  that represent the linguistic states NL, NM, NS, AZ, PM, PS and PL and µ𝐶𝑖
 𝑧  is a monotonic 

function. Since each I/P- variable has, seven linguistic states, the total number of possible non- conflicting fuzzy 

inference rules are 72 = 49. 

In practice, instead of these 49 rules, a small subset of all possible fuzzy inference rules is often sufficient to obtain 

acceptable performance of the fuzzy controllers. 

An appropriate subset of fuzzy rules derived intuitively by common sense reasoning is as follows: 

Rule (1): If I is AZ and τ is NL then  𝐼𝑚𝑒𝑚𝑏    is   PL 

Rule (2): If I is NS and τ is NL then   𝐼𝑚𝑒𝑚𝑏   is PM 

Rule (3): If I is NM and τ is NL then  𝐼𝑚𝑒𝑚𝑏   is NS 

Rule (4): If I is NM and τ is AZ then 𝐼𝑚𝑒𝑚𝑏    is AZ 

Rule (5): If I is NS and τ is PS  then  𝐼𝑚𝑒𝑚𝑏 is PL 

Rule (6): If I is PS  and τ is NS then  𝐼𝑚𝑒𝑚𝑏    is PS 

Rule (7): If I is   PL and τ is AZ then𝐼𝑚𝑒𝑚𝑏   is PL 

Rule (8): If I is AZ and τ is NS then 𝐼𝑚𝑒𝑚𝑏   is PS 
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Rule (9): If I is AZ and τ is NM then𝐼𝑚𝑒𝑚𝑏 is PM 

 

(c) Measurement of the adaptability and infer conclusions: - Measurements of I/P-variables of fuzzy controller 

must be properly combined with the relevant fuzzy information rules to make inference regarding the O/P- variables. 

This is the purpose of the inference engine. This process of finding inferred crisp O/P by inference is called rule 

strength computation or adaptability the rule or firing strength. We note that in the Tsukamoto fuzzy rules given by 

(8), the consequence part of each rule is represented by fuzzy set  𝐶𝑖 with monotonic membership function 𝜇𝐶𝑖
 (𝑤 ) 

and that 𝛼𝑖  is the matching degree of the ith rule. For the singleton input values (sensor readings) of the linguistic 

variables intensity(𝐼 = 𝑥0) and duration (τ = 𝑦0) the matching degree  𝛼𝑖  is obtained by  

𝛼𝑖  = 𝜇𝐴𝑖
(𝑥0) ˄ 𝜇𝐵𝑖

(𝑦0), i = 1, 2… n 

Where  “˄” denote the minimum operation. 

 

The overall inferred O/P result is taken as the weighted average of each rule‟s output is given by  

 

𝑤𝑖 = µ𝑐𝑖
−1(𝛼𝑖  ), i = 1, 2… n                                                    (9) 

 

The final result is derived from the weighted average formula which is expressed as, 

 

𝑤0 =
  𝛼𝑖  𝑤 𝑖

𝑛
𝑖=1

  𝛼𝑖
𝑛
𝑖=1

 , where n is a finite positive integer. 

 

Since each rule infers a crisp result, the Tsukamoto fuzzy model aggregates each rule‟s O/P by the weighted average 

method. Therefore, this method avoids the time consuming process of defuzzication. 

 

Following the above mathematical steps of the Tsukamoto fuzzy rule base for the computation final o/p result we 

proceed as;           

 Utilizing fuzzy membership values from Figure 7 and Figure 8 and appropriate subset fuzzy rules that fired only (1 

and 2). 

We write these rules for sensor reading (𝑥0  , 𝑦0 ) = (0.40, 0.10) of the  I/P variables intensity and duration 

respectively. 

Rule (1): If x [= I=0.40] is 𝐴1[AZ=0.08] and y [=τ =0.10] is 𝐵1[=NL=1] then z [ 𝐼𝑚𝑒𝑚𝑏 ] is 𝐶1 [=PL]. 

Rule (2): If x [= I=0.40] is 𝐴2[NS=0.92] and y [=τ =0.10] is 𝐵2[=NL=1] then z [ 𝐼𝑚𝑒𝑚𝑏 ] is 𝐶2[=PM]. 

 The computation for measure of adaptability of each rule is as follows: 

Adaptability Rule (1):𝛼1= 𝜇𝐴1
(𝑥0= 0.40) ˄ 𝜇𝐵1

(𝑦0= 0.10) = min (0.08, 1) = 0.08 

Adaptability Rule (2):𝛼2= 𝜇𝐴2
 (𝑥0= 0.40) ˄ 𝜇𝐵2

(𝑦0= 0.10) = min (0.92, 1) = 0.92 

Where “ ˄” represents minimum -operation. 

We can check very easily adaptability of remaining six rules are zero: min (0, 0) = min (0, 0) = min (0.920, 0) = min 

(0, 0)= min (0, 0) = min (0.0799, 0) = 0. 

The calculations in the conclusion rules 1 and 2 corresponds with cutting the fuzzy sets in the consequence part by 

height of the adaptability of the premise part are  shown in Figure 9. 
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Figure 9: Graphical representation of Tsukamoto method by height adaptability of  premise part. 

 

(d) Aggregate the individual conclusion to obtain the overall conclusion: -Final O/P result is derived 

using the weighted average formula as follows, when there are two “If-Then” rules are in action, 

 

𝑤0 =
𝛼1𝑤1+𝛼2𝑤2

𝛼1  + 𝛼2
 ,  

 Now using the values𝛼1,𝛼2,𝑤1  𝑎𝑛𝑑 𝑤2in the above equation we get, 

𝑤0 =
0.08 ∗ 82 + 0.92 ∗ 76

0.08 + 0.92
 

                                                                  = 76.48. 

Thus for the singleton I/Ps  (𝑥0  , 𝑦0 ) = (0.40, 0.10) of the linguistic variables intensity (I) and duration (τ) 

respectively by Tsukamoto fuzzy control we get desired O/P result i.e. membrane current (𝐼𝑚𝑒𝑚𝑏 ) is, 

𝐼𝑚𝑒𝑚𝑏 = 76.48 µ𝐴/𝑐𝑚2. 

4. GENERALIZATION OF TSUKAMOTO - FUZZY LOGIC CONTROL EEG SIGNAL MODEL: In order 

to examine the sensitivity and validity of Tsukamoto - fuzzy logic controlled EEG signal model, we design this for 

distinct I/P values (sensor readings) of linguistic variables intensity (I) and duration (τ)and study responses of the 

O/P results “membrane current” of the respective model. This is to be carried out by the following three steps: 

Step (𝒂𝟏): Fuzzification of I/P linguistic variables for distict sensor readings. 

Step (𝒃𝟏) :Measurement of adaptability and infer the conclusion. 

Step (𝒄𝟏) :Aggregation the individual conclusion to obtain the overall conclusion. 

Step (𝒂𝟏) Fuzzification of I/P linguistic variables for distinct sensor readings. 

The computation of fuzzy membership values from Figure 5 for which 𝑓𝐼 𝑥0 = 0.40 ≠  0,   is already calculated in 

step (a)and its Pictorial representation is also shown in Figure 9. 

 

 

 

 



ISSN-2319-2119 

 RESEARCH ARTICLE 
                                              Prakash N. KambleTheExperiment,2016., Vol.35(3),2182-2194 

 
 
 
 

 
    
 
 
 

www.experimentjournal.com2190 

 

Figure 10Figure 11 

 

Figures (10 and 11): The fuzzification of I/P- variables intensity (at 𝑥0 = 0.40  and its ±10% variations) and 

duration (at y0 = 0.10 and at its ±10% variations) is shown in Figure 10 and Figure 11 respectively.                                                                                   

 

In order to examine the sensitivity responses of O/P results of fuzzy controller, we calculate the membership values 

for the respective fuzzy sets by varying ±10% of the above sensor reading 𝑥0 = 0.40  as follows. 

First maximizing 10% of 0.40 we get 0.44. The determination of the membership values for NS and AZ is as below 

and is shown in Figure 10. 

 

NS (0.44) =
0.44−0.52

0.39−0.52
=

0.08

0.13
= 0620; AZ (0.44) =

0.44−0.39

0.52−0.39
 =   

0.05

0.13
 = 0.380. 

 

Remaining all fuzzy membership values are zero such as, N L (0.44) = N M (0.44) = P S (0.44) = P M (0.44) = PL 

(0.44) = 0. 

 

Next by minimizing 10% of 0.40 we get 0.36. The determination of the membership values for NS and NM is as 

below and is shown in Figure 10. 

 

NS (0.36) =  
0.36−0.26

0.39−0.26
 = 

0.10

0.13
 = 0.770; NM (0.36) =

0.36−0.39

0.26−0.39
= 

0.03

0.13
 = 0.230. 

 

Remaining all fuzzy membership values are zero such as,  N L (0.36) = AZ (0.36) = P S (0.36) = P M (0.36) = PL 

(0.36) = 0. 

Proceeding similar to above. The computation of fuzzy membership values for 𝑓𝜏 𝑦0 = 0.10 is carried out using 

only that part of Figure 6 for which 𝑓𝜏 𝑦0 = 0.10 ≠ 0, as below and is shown in Figure 11. 

, 

𝑁𝐿 0.10  = 1. 

 

Remaining all memberships values from Figure 6 are zero such as, NS (0.10) = AZ (0.10) = PL (0.10) = PM (0.10) 

= PS (0.10) =NM (0.10) = 0. This shows that only one rule fires, namely NL (0.10) = 1. 

 

In order to examine the sensitivity and validity of O/P results of fuzzy controller, we calculate the membership 

values for the respective fuzzy sets by varying ±10% of the above sensor reading  𝑦0 = 0.10 as follows. 

 

First by maximizing 10% of 0.10 we get 0.11. The determination of the membership values for the fuzzy set NL is 

as below and is shown in Figure 11 

NL (0.11) = 1. 

 

Remaining all memberships values from Figure 6 are zero such as, NS (0.11) = AZ (0.11) = PL (0.11) = PM (0.11) 

= PS (0.11) = NM (0.11) = 0. This shows that only one rule fires, namely NL (0.11) = 1. 

Secondly by minimizing 10% of 0.10 we get 0.09. The determination of the membership values for the 

fuzzy set NL is as below and is shown in Figure 11. 
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NL (0.09) = 1. 

 

Remaining all memberships values from Figure 6 are zero such as NS (0.09) = AZ (0.09) = PL (0.09) = PM (0.09) = 

PS (0.09) = NM (0.09) = 0. This shows that only one rule fires, namely NL (0.09) = 1. 

 

(c) Measurement of the adaptability and infer conclusion: -For measurements of the adability of the premise rule 

for ±10% variations of the values of the I/p linguistic variables and then to infer the conclusion from these 

adaptability we proceed as follows: 

 

Utilizing fuzzy membership values from Figure 10 and Figure 11 and appropriate subset fuzzy rules that fired (1 and 

2) we have, 

We write these rules for 10% maximization of sensor reading (𝑥0  , 𝑦0) = (0.40, 0.10) of the  I/P variables intensity 

and duration respectively. So that we get, 

Rule (1): If x [= I=0.44] is 𝐴1[AZ=0.38] and y [=τ =0.11] is 𝐵1[=NL=1] then z [ 𝐼𝑚𝑒𝑚𝑏 ] is 𝐶1 [=PL]. 

Rule (2): If x [= I=0.44] is 𝐴2[NS=0.62] and y [=τ =0.11] is 𝐵2[=NL=1] then z [ 𝐼𝑚𝑒𝑚𝑏 ] is 𝐶2[=PM]. 

 The computation for measure of adaptability of each rule is as follows: 

Adaptability Rule (1):  𝛼1= 𝜇𝐴1
(𝑥0= 0.44) ˄ 𝜇𝐵1

(𝑦0= 0.11) = min (0.38, 1) = 0.38; 

Adaptability Rule (2): 𝛼2= 𝜇𝐴2
 (𝑥0= 0.44) ˄ 𝜇𝐵2

(𝑦0= 0.11) = min (0.62, 1) = 0.62 

Where “ ˄” represents minimum -operation. 

We can check very easily adaptability of remaining six rules are zero: min (0, 0) = min (0, 0) = min (0.380, 0) = min 

(0, 0)= min (0, 0) = min (0.62, 0) = 0. 

The calculations in the conclusion rules 1 and 2 corresponds with cutting the fuzzy sets in the consequence part by 

height of the adaptability of the premise part are  shown in Figure 12. 

 
  Figure 12: Graphical representation of Tsukamoto method. 

 

Aggregate the individual conclusion to obtain the overall conclusion: - Final O/P result is derived using the 

weighted average formula as follows, when there are two “If-Then” rules are in action, 

 

𝑤0 =
𝛼1𝑤1+𝛼2𝑤2

𝛼1  + 𝛼2
 ,  

 Now using the values𝛼1,𝛼2,𝑤1  𝑎𝑛𝑑 𝑤2in the above equation we get, 
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𝑤0 =
0.38 ∗ 88 + 0.62 ∗ 74

0.38 + 0.62
 

                                                                  = 79.32. 

Similar to above Utilizing fuzzy membership values from figure 7 and figure 8 and appropriate subset fuzzy rules 

that fired only (1,2 and 3) we have, 

We write these rules for 10% minimization of sensor reading (𝑥0  , 𝑦0) = (0.40, 0.10) of the  I/P variables intensity 

and duration respectively. So that we get, 

Rule (1): If x [= I=0.36] is 𝐴1[NS=0.77] and y [=τ =0.09] is 𝐵1[=NL=1] then z [ 𝐼𝑚𝑒𝑚𝑏 ] is 𝐶1 [=PM]; 

Rule (2): If x [= I=0.36] is 𝐴2[NM=0.23] and y [=τ =0.09] is 𝐵2[=NL=1] then z [ 𝐼𝑚𝑒𝑚𝑏 ] is 𝐶2[=PS]; 

 The computation for measure of adaptability of each rule is as follows: 

Adaptability rule-1:𝛼1= 𝜇𝐴1
(𝑥0= 0.36) ˄ 𝜇𝐵1

(𝑦0= 0.09) = min (0.23, 1) = 0.23 

Adaptability rule-2:𝛼2= 𝜇𝐴2
 (𝑥0= 0.36) ˄ 𝜇𝐵2

(𝑦0= 0.09) = min (0.77, 1) = 0.77 

Where “ ˄” represents minimum -operation. 

We can check very easily adaptability of remaining six rules are zero: min (0, 0) = min (0, 0) = min (0.380, 0) = min 

(0, 0)= min (0, 0) = min (0.62, 0) = 0. 

The calculations in the conclusion rules 1 and 2 corresponds with cutting the fuzzy sets in the consequence part by 

height of the adaptability of the premise part are  shown in Figure 13. 

 

 
Figure 13 . Graphical representation of Tsukamoto method. 

 

 

 

 

 

 

 

Aggregate the individual conclusion to obtain the overall conclusion: - Final O/P result is derived using the 

weighted average formula as follows, when there are two “If-Then” rules are in action, 

 

𝑤0 =
𝛼1𝑤1+𝛼2𝑤2

𝛼1  + 𝛼2
 ,  

 Now using the values𝛼1,𝛼2,𝑤1  𝑎𝑛𝑑 𝑤2in the above equation we get, 
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𝑤0 =
0.77 ∗ 76 + 0.23 ∗ 56

77 + 0.23
 

                                                                  = 71.40. 

The comparative study of O/P results of Hodgkin- Huxley classical EEG signal model and our designed Tsukamoto 

FLC models is given in the following table. 

Models Input Sensor Readings Output Results 

 

Classical EEG Signals Model  𝑥0  , 𝑦0 = (0.40,0.10) 80.00 

FLC-EEG Signals Model  𝑥0  , 𝑦0 = (0.40,0.10) 76.64 

FLC-EEG Signals Model  𝑥0  , 𝑦0 = (0.44,0.11) 79.32 

FLC-EEG Signals Model  𝑥0  , 𝑦0 = (0.36,0.09) 71.40 

 

5. CONCLUSION:  

If we go through the stepwise discussions of Tsukamoto fuzzy control model comparing with classical EEG signal 

model. It is observed that the numbers of rules are greatly reduced and computational complexities are highly 

mitigated. The general modification and tuning of control rules are very easily carried out. The working skeleton and 

final O/P result of the model signify that the Tsukamoto – fuzzy control model have better performance in 

comparison to the classical mathematical model of EEG signals.   The comparative result implicates that the model 

of the Tsukamoto -fuzzy control obtained from the classical mathematical model of EEG signal are catering the 

actual dynamics of the system. 
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