

Simultaneous determination of Amoxicillin trihydrate, Pantoprazole sodium and Clarithromycin in bulk powder and tablet formulation by an isocratic RP-HPLC method Abstract:

Sensitive, rapid and precise an isocratic RP-HPLC method was developed and validated for simultaneous determination of Amoxicillin trihydrate (AMO), Pantoprazole Sodium (PAN) and Clarithromycin (CLA) in bulk powder and pharmaceutical formulation. A mixture of Methanol: Buffer (Ammonium acetate) (70:30 v/v, pH 4) was used as a mobile phase. The stationary phase used was HiQsil C18HS (4.6×250 mm, 5µm) analytical column. The flow rate was 1 ml/min and the detection was set at 240.2 nm. The method was linear in the range of 5-25 µg/ml for AMO, PAN and CLA respectively. The selectivity of the proposed method was checked using laboratory prepared mixtures. The validated method was successfully applied to the analysis of AMO, PAN and CLA in mixture and in their pharmaceutical dosage form without interference from other additives.

Key words: Isocratic, RP-HPLC, analytical column, flow rate.

1. INTRODUCTION:

Amoxicillin trihydrate (AMO) is chemically known as (2S,5R,6R)-6-{[(2R)-2-amino-2-(4-hydroxyphenyl)-acetyl]amino}-3,3dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylic acid trihydrate (Figure 1). Amoxicillin is susceptible to degradation by β -lactamase-producing bacteria, which are resistant to a narrow spectrum of β -lactam antibiotics, such as penicillin. For this cause, it is frequently combined with clavulanic acid, a β -lactamase inhibitor. This drug combination is commonly called co-amoxiclav. Mixing the drugs increases effectiveness by reducing susceptibility to β -lactamase resistance.(Xiaofeng&Zhenghua, 2006).

Amoxicillin is used in the handling of a number of infections, including acute otitis media, streptococcal pharyngitis, pneumonia, skin infections, urinary tract infections, Salmonella infections, Lyme disease, and chlamydia infections (Chakravarthy et al., 2010). Amoxicillin trihydrate is official in the B.P., (Madhura et al., 2011) where it was found out by chromatography system. A study of the literature revealed that Amoxicillin has been estimated in pharmaceuticals by UV-visible spectrophotometric (Kamal et al., 2008; Hesham et al., 2002), spectrofluorimetry (El Walily et al., 1999) and chromatographic methods (Jani , 2014; Dhoka& Joshi, 2010; Shanmugasundaram et al., 2009; Angela & Kumar, 2011; Solanki&Badri, 2013; Rajput &Bhamre, 2014; Jadhav&Salunkhe, 2013; Numan&Majed, 2009; Patel &Varshney, 2014). Pantoprazole Sodium (PAN), 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)methyl]sulphinyl]-1H-benzimidazole (Figure 2), is a selective and long acting proton-pump inhibitor used for treatment of acid-associated gastrointestinal disorders. The proton-pump inhibitor Pantoprazole inhibit gastric acid by blocking the H+ /K+ -adenosine triphosphatase enzyme system (the proton pump) of the gastric parietal cell. It is employed for short-term treatment of erosion and ulceration of the esophagus (Edwin, 2001).

Different analytical methods are described in the literature for the assay of Pantoprazole Sodium in dosage forms and in biological fluids, including spectrophotometry (Moustafa, 2000), HPTLC (Seema et al., 2006) and HPLC (Khanage et al., 2013; Siddartha&Sudheer, 2013; Jagatiya, 2012; Shitole&Gurjar, 2015; Mohideen, et al., 2011).

Clarithromycin (CLA) is a semi-synthetic macrolide antibiotic derived from Erythromycin with parallel actions and uses. Because of its good antimicrobial activity against a broad range of Gram-positive and Gram-negative organisms, Clarithromycin is used to treat the respiratory tract infections and skin and soft tissue diseases (Sweetman, 2011; Rodvold, 1999). Clarithromycin inhibits bacterial protein synthesis by binding to the bacterial 50S ribosomal subunit. Chemically, Clarithromycin is described as (3R,4S,5S,6R,7R,9R,11R,12R,13S,14R) -6-{[(2S,3R,4S,6R) -4-(dimethylamino) -3-hydroxy-6-methyloxan-2- yl] Oxy} -14-eth yl-12,13-dihydroxy-4-{[(2R,4R,5S,6S) -5-hydroxy-4- methoxy -4,6-dimethyloxan-2-yl] Oxy} -7-methoxy-3,5,7,9,11,13-hexa methyl-1-oxacyclotetradecane-2,10-Dione (Figure 3).

Shantaram G. Khanageet al, The Experiment, 2017., Vol 39(3), 2330-2344

INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY

Clarithromycin is as a Cytochrome P450 3A4 inhibitor, Cytochrome P450 3A Inhibitor, and P-Glycoprotein Inhibitor (Chey& Wong, 2007, Soichiro& Bruce, 2010). A study of the literature revealed that Clarithromycin has been estimated in pharmaceuticals by UV-visible spectrophotometric (Bakhtiar et al., 2013), TLC (Salem &Safa, 2013) and HPLC (Birch & Chan, 2001; Salem, 2014; Seyed, 2013).

Amoxicillin trihydrate, Pantoprazole sodium and Clarithromycin are present in tablets (PANTOCID HP Compound) are applied for treatment of respiratory, genitourinary, skin and soft tissue infection. As per literature triple therapy can be used with Pantoprazole, Clarithromycin and Amoxicillin for eradication in patients with Helicobacter pylori positive duodenal ulcers (Ghazzawi*et al.*, 2004). Up to our cognition, there is no isoocratic RP-HPLC method was identified for the simultaneous determination of the three studied drugs in their laboratory prepared mixtures and in the pharmaceutical dosage form. The present work aimed to develop and validate an isocratic RP-HPLC method for simultaneous determination of AMO, PAN and CLA in laboratory prepared mixtures and pharmaceutical dosage form.

2. EXPERIMENTAL PART:

2.1 Instruments

Liquid chromatography was performed on JASCO Isocratic HPLC system model LC-NET II/ADC (JASCO Corporation, Japan) The system built with highly sensitive PDA detector and HiQsil C18HS ($4.6 \times 250 \text{ mm}$, $5\mu\text{m}$) column with a 20 μL manual sample injector. The HPLC system was equipped with Chrom-NAV software for data processing.

2.2 Chemicals and reagents

The standard drug Amoxicillin Trihydrate was obtained from Wockhardt Pharmaceutical Ltd., Aurangabad, India. Pantoprazole Sodium was obtained fromVasudhaPharma, Chemical Pvt. Ltd., Ahmedabad, India. Clarithromycin was procured from Ajanta pharma Ltd. Paithan, Dist-Aurangabad, India. HPLC grade water was acquired from LobaChemie Mumbai, India. HPLC grade Acetonitrile, Acetic acid, Iso-propyl Alcohol and Methanol were purchased from Merck Ltd., India. EP grade buffering agent Orthophosphoric Acid, Ammonium acetate and triethylamine were purchased from Fisher scientific, Mumbai, India.

2.3 ANALYTICAL METHOD:

2.3.1 Chromatographic system and conditions

The compounds AMO, PAN and CLA were eluted off the column with a mobile phase containing Methanol: Buffer (Ammonium acetate) (70:30 v/v) and the Buffer was adjusted to pH 4 by Glacial acetic acid for RP-HPLC system. The flow rate was 1.0 mL/min and effluent was monitored at analytical wavelength 240.2 nm. The retention time of AMO, PAN and CLA were 1.941 min, 3.331 min and 2.518 min, respectively and the total run was 10 min as specified in Table 1.Prior to analysis mobile phase was filtered through a 0.45 μ m nylon filter and then ultrasonicated for 30 min. The method was validated in accordance with the International Conference onHarmonization guidelines for validation of analytical procedures (ICH, 2000; ICH, 2005).

2.3.2 Preparation of buffer solution

The buffer preparation was done by dissolving 1.925 gm of Ammonium acetate in 100 Ml HPLC grade water, pH adjusted to 4 by using glacial acidic acid.

2.3.3 Preparation of mobile phase

Initially buffer was prepared by using the 1.925 gm of Ammonium acetate in 100 mL HPLC grade water, pH adjusted to 4 by using Glacial acidic acid, then 20 min ultra-sonication of this buffer solution was done and Methanol: Buffer (70:30 v/v), the prepared mobile phase was degassed by ultra-sonication for about 20 min, lastly the mobile phase after degassing was filtered through $0.45\mu m$ membrane nylon filter.

RESEARCH ARTICLE

Shantaram G. Khanageet al, The Experiment, 2017., Vol 39(3), 2330-2344

INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY

2.3.4 Preparation of standard stock solutions

AMO 10 mg, PAN 10 mg and CLA 10 mg were accurately weighed on electronic balance and dissolved in 50 mL of mobile phase separately with shaking. Then the resulting solutions were sonicated and the volume was made up to 100 mL by addition of mobile phase to get the conc. 100 μ g/mL. From the standard stock solution of drugs, appropriate dilutions were made with the mobile phase and the sample was filtered through 0.2 μ m membrane nylon filter.

2.3.5 Loading of mobile phase

Filtered and degassed mobile phase was loaded in the 500 mL reservoir. Priming was done in each freshly prepared mobile phase.

2.3.6 Baseline stabilization

The detector was turned on for an hour before the actual run in order to obtain the stable UV light. The mobile phase run was started at the desired flow rate and the run was continued until the stable baseline was obtained.

2.3.7 Loading of samples

Well prepared and filtered samples of AMO, PAN and CLA were loaded into the Rheodyne injector port using a 2 mL glass syringe and then the sample was injected.

2.3.8 Construction of calibration curves

Working solutions were prepared immediately before use to cover the concentration ranges from (5-25 μ g/mL) for AMO, PAN and CLA injected into the column and the chromatogram was performed. A graph was plotted as concentration of each drug against response (peak area) and it was found to be linear for all the drugs.

2.4 Assay of pharmaceutical formulations

Twenty tablets of each formulation containing 750 mg AMO, 40 mg of PAN and 500 mg CLA were weighed and powdered. The tablets were crushed to fine powder and the amount of powder equivalent to 75 mg AMO, 4 mg PAN and 50 mg CLA was weighed accurately, and then transferred to 100 mL dried volumetric flask. Sufficient quantity of mobile stage was added to break up the content and resulting solution was stirred for 20 minute. The volume was made up to 100 mL with the mobile phase and then filtered through membrane filter and degassed in sonicator. From this solution appropriate dilutions of AMO, PAN and CLA were made to make the final concentrations. After that sample was injected into the HPLC system to get chromatogram. The chromatogram obtained is presented in Figure 9 and the area obtained in each chromatogram of three replicates was correlated with regression equation and the quantity found was calculated, which was within the limit and results obtained are recorded in Table 2.

3. RESULTS AND DISCUSSION:

3.1 Optimization of chromatographic conditions

Chromatographic parameters comprising wavelength detection, mobile phase composition and proportions, pH and flow rate were prudently studied in order to identify the most appropriate chromatographic condition for analysis. The choice was based on the number of theoretical plates and best resolution in a reasonable time.

3.2 Selection of analytical wavelength

By appropriate dilution of each standard stock solution in the mobile phase, various concentrations of AMO, PAN and CLA were prepared separately. Each solution was scanned in between the range of 200-400 nm using UV-Visible double beam spectrophotometer (V-630 JASCO Corporation, Japan),Spectroscopic analysis of the drugs showed that AMO, PAN and CLA have maximum absorbance at 230 nm, 254 nm and 260 nm, respectively, then their overlain spectrum was taken (Figure 4). The isoabsorptive point was observed at 240.2 nm in the overlain spectrum. The wavelength selected for the HPLC analysis was 240.2 nm to which these three drugs showed maximum absorbance and good resolution of peaks.

RESEARCH ARTICLE

Shantaram G. Khanageet al, The Experiment, 2017., Vol 39(3), 2330-2344

3.3 Linearity and range

Linearity study for the proposed method was established by least square linear regression analysis. Linearity was assessed by a plot of concentration versus peak area. The calibration graphs were found to be linear in the range of 5-25 μ g/mL, 5-25 μ g/mL and 5-25 μ g/mL, respectively for AMO, PAN and CLA with correlation coefficient values 0.998, 0.997 and 0.998 respectively as indicated in Table 3, 4 and 5.

3.4 Accuracy (Recovery study)

The accuracy was performed by standard addition method. Three replicate injections, each of three different test concentrations at the level of 50, 100 and 150% were studied. The accuracy and reproducibility is apparent from the data as results are close to 100% and the value of standard deviation and % R.S.D were found to be < 2%, which shows the method is highly précised and accurate. The recovery study is indicated in Table 6, 7 and 8.

3.5 Precision

Precision/repeatability study was carried out using analysis of the drug by intra-day and inter-day variability. Results indicated that the % RSD found less than 2. The precision study for AMO, PAN and CLA was carried out by inter-day, which is discussed in Table 9, 10 and 11 and intra-day study has shown in Table 12, 13 and 14.

3.6 Limit of Detection (LOD)

The value for LOD was calculated from the following formula

LOD=3.3o/S

Where, σ = Standard deviation of the response,

S = Slope of the calibration curve.

The Limit of detection (LOD) for AMO, PAN and CLA was found to be 0.02667 µg/mL, 0.0153 µg/mLand 0.0886 µg/mL respectively.

3.7 Limit of Quantitation (LOQ)

The value for LOQ was calculated from the following formula

LOQ=10o/S

Where, σ = Standard deviation of the response,

S = Slope of the calibration curve.

The Limit of Quantitation (LOQ) for AMO, PAN and CLA was found to be 0.08084 μ g/mL, 0.0464 μ g/mL and 0.08272 μ g/mL respectively.

3.8 Selectivity

After the selection of suitable mobile phase, it was then optimized for its reproducibility, sensitivity and accuracy. The optimized parameters were found to be suitable as well as there was no observation of any peak of the excipients or impurity other than the peak of AMO, PAN and CLA during experimental work, hence the proposed method was selected for development. Comparison of the chromatograms obtained from the mobile phase (blank), AMO, PAN, CLA standards and the tablet formulation revealed no significant interference, using same chromatographic conditions for all samples. Figure 5-10 are referring to the selective method for the analyte concerned.

3.9 Ruggedness

Different parameters like different laboratory condition, different source of reagents/solutions and different analyst, as a result, there was no any significant change in the optimized parameters were observed as indicated in Table 15.

3.10 Robustness

The method must be robust enough to withstand slight changes and allow routine analysis of samples. Robustness of the method were determined by carrying out the analysis under conditions during which change in flow rate, change in the organic composition of the mobile phase, change in pH, and change in analytical wavelength were studied. Variation of organic composition in the mobile phase, pH, wavelength and flow rate were seemed to have no significant impact on resolution, peak area, tailing factor, retention time and theoretical plate. The observations of robustness study are shown in Table 16-19.

Shantaram G. Khanageet al, The Experiment, 2017., Vol 39(3), 2330-2344

3.11 Solution stability

Stability in solution was evaluated by the standard solution and the test preparation. The solution was stored at ambient temperature without protection from light and tested after 12, 24, 36, and 48 hrs. The responses for the aged solution were evaluated by comparison with freshly prepared solutions. The stability study of the stored standard solution and test preparation was performed and solutions were found to be stable for up to 48 hrs. The assay values obtained after 48 hr were statistically identical with the initial value without measurable loss as shown in Table 20.

4. CONCLUSIONS:

An isocratic RP-HPLC method has been developed for the simultaneous estimation of mixture a of AMO, PAN and CLA. The developed method was validated in accordance with ICH guidelines and it was found to be simple, precise, accurate and sensitive. Excipients present in the tablets show no interference in the determination. The proposed method can be used in quality control laboratories for routine analysis of AMO, PAN and CLA in their pure mixtures and pharmaceutical preparations.

5. ACKNOWLEDGEMENT:

The authors are thankful to Principal, Dr. Deshmukh V. K., M. E. S. College of Pharmacy, Sonai and Secretary, Honorable PrashantPatilGadakh, Mula Education Society, Sonai, for encouragement and availing of the necessary facilities during the course of investigation. Authors are also gratified to Wockhardt Pharmaceutical Ltd., VasudhaPharma chemical Pvt Ltd., and Ajanta Pharma Ltd. for providing a gift sample for this project work

Figure 1. Chemical Structure of AMOFigure 2. Chemical Structure of PAN

Figure 3. Chemical Structure of CLA

RESEARCH ARTICLE

Shantaram G. Khanageet al, The Experiment, 2017., Vol 39(3), 2330-2344

Figure 4.Overlain Spectra of AMO, PAN and CLA (240.2 nm) in optimised mobile phase

Figure 5.Chromatogram of selected M.PFigure 6. Chromatogram of AMO 5 $\mu g/mL$

Figure 7.Chromatogram of PAN 5 µg/mL Figure 8. Chromatogram of CLA 5µg/mL

RESEARCH ARTICLE

Shantaram G. Khanageet al, The Experiment, 2017., Vol 39(3), 2330-2344

Figure 9.Chromatogram of Tablet formulation

Figure 10. Chromatogram of working standard

RESEARCH ARTICLE

Shantaram G. Khanageet al, The Experiment, 2017., Vol 39(3), 2330-2344

Tuble 1. Optimile en ontrogruphice conditions of Ne 111 De unarysis							
Parameters	Chromatographic conditions						
HPLC System	Jasco HPLC system, Japan						
Pump	PU-2080 plus HPLC pump						
Detector	UV-2075 plus as UV-VIS PDA detector						
Column	HiQsil C18 HS (4.6 mm×250 mm) column						
Column temperature	Ambient						
Mobile phase	Methanol: Buffer (Ammonium acetate) (70:30 v/v), pH 4						
Detection of Wavelength	240.2 nm						
Flow rate	1 mL/min						
Sample volume	20 µL						
Run time	10 min						
Retention time	Amoxicillin trihydrate : 1.941 minPantoprazole sodium : 3.331 minClarithromycin : 2.518 min						

Table 1. Optimal chromatographic conditions of RP-HPLC analysis

Table 2. Analysis of Tablet Formulation

Brand Name of Tablet Formulation	Drug	Label Claim	Peak area (µV/sec)	% of label claim determined	Mean %	SD^*	\mathbf{RSD}^*
PANTOCID HP	AMO	750	109256	99.89%	99.73%	0.2192	0.2197
(Compound) By Sup Phormo	PAN	40	105196	99.12%	99.17%	0.2547	0.2568
Ltd.	CLA	500	107245	99.75%	99.65%	0.1446	0.1451
PANTOP HP	AMO	750	109364	99.58%	99.48%	0.2433	0.2451
By-Aristo Pharma,	PAN	40	104555	99.22%	99.76%	0.1918	0.1962
Liu.	CLA	500	109421	99.55%	98.69%	0.2316	0.2389

* indicates avreage of three determination

Table 3. Linearity data for AMO

Standard conc \rightarrow	5 μg/mL	10 μg/mL	15 μg/mL	20 μg/mL	25 μg/mL
Replicates ↓			Peak area		
1	109213	221210	341939	432446	541892
2	109281	221392	342333	432314	542013
3	109301	221991	342415	432610	541916
4	109340	221492	342319	432214	542011
5	109410	222113	342412	432319	542115
Mean	109309	221639	342283	432380	541989
±SD	65.15	395.21	197.60	115.38	88.94
RSD	0.05960	0.1783	0.0577	0.0266	0.01640
Correlation coefficient (R ²)			0.998		

Table 4. Linearity data for PAN									
Standard conc. $\overset{\rightarrow}{}$	5 μg/mL	10 μg/mL	15 μg/mL	20 μg/mL	25 μg/mL				
Replicates ↓			Peak area						
1	104550	231644	361268	457984	548588				
2	104566	231656	361366	457983	548434				
3	104538	231632	361310	457881	548434				
4	104432	231522	361322	457921	548510				
5	104511	231620	361323	457822	548521				
Mean	104519	231614	3613171	457918	548494				
±SD	47.25	47.92	79.25	141.18	202.41				
RSD	0.0451	0.0206	0.0219	0.0308	0.0036				
Correlation coefficient (R ²)			0.997						

Table 5. Linearity data for CLA

Standard conc. $\stackrel{\rightarrow}{\rightarrow}$	5 μg/mL	10 μg/mL	15 μg/mL	20 μg/mL	25 μg/mL
Replicates ↓			Peak area		
1	107683	211644	333912	422432	531892
2	107551	211323	333401	422533	531911
3	107682	212213	333821	422725	531635
4	107462	211492	333951	422419	532116
5	107552	212013	333816	422735	531965
Mean	107586	211737	333902	422568	531903
±SD	95.37	371.62	81.537	153.66	174.08
RSD	0.0886	0.1755	0.0244	0.0363	0.0327
Correlation coefficient (R ²)			0.998		

Table 6. Recovery study of AMO

				J V			
			An	noxicillin trihydra	ate		
Recovery level	Amt. Taken	Amt. added	Total amount	Amt. recovered	% recovery	Average	RSD
70	(µg/mL)	(μg/ΠΕ)	(μg/mL)	(µg/mL)	recovery	% ± SD	Rob
509/	5.0	2.5	7.5	7.428	99.04	08.02	
50%	5.0	2.5	7.5	7.440	98.66	+0.7071	0.714
	5.0	2.5	7.5	7.433	99.06	±0.7071	
	5.0	5.0	10	9.803	98.03	00.20	
100%	5.0	5.0	10	9.901	99.01	90.20	0.527
	5.0	5.0	10	9.782	99.82	±0.5180	
	5.0 7.5 12.5 12.413 99.58	00.01					
150%	5.0	7.5	12.5	12.401	99.02	99.01	0.047
	5.0	7.5	12.5	12.339	98.43	±0.0469	

www.experimentjournal.com2338

	Table 7. Recovery study of PAN										
Dogovory			Pa	ntoprazole sodiu	m						
level %	Amt. taken (µg/mL)	Amt. added (µg/mL)	Total amount (μg/mL)	Amt. recovered (μg/mL)	% recovery	Average recovery% ± SD	RSD				
	5.0	2.5	7.5	7.476	99.68	00.05					
50%	5.0	2.5	7.5	7.482	99.16	+0.7273	0.341				
	5.0	2.5	7.5	7.479	99.06	±0.7275					
	5.0	5.0	10	9.989	99.89	00.00					
1000/	5.0	5.0	10	9.982	99.83	99.00	0.018				
100%	5.0	5.0	10	9.983	99.15	±0.4338					
	5.0	7.5	12.5	12.345	98.70	09 292					
150%	5.0	7.5	12.5	12.473	99.76	98.382	0.042				
	5.0	7.5	12.5	12.251	98.00	±0.0917					

Table 8. Recovery study of CLA

Decorrows				Clarithromycir	1		
level %	Amt. taken (µg/mL)	Amt. added (µg/mL)	Total amount (µg/mL)	Amt. recovered (μg/mL)	% recovery	Average recovery% ± SD	RSD
	5.0	2.5	7.5	7.469	99.13	00.57	
50%	5.0	2.5	7.5	7.478	99.86		0.391
	5.0	2.5	7.5	7.480	99.73	±0.3894	
	5.0	5.0	10	9.893	98.93	08.02	
1009/	5.0	5.0	10	9.925	99.25	96.92 ±0.3351	0.389
10070	5.0	5.0	10	9.858	98.58	±0.5551	
	5.0	7.5	12.5	12.422	99.36	00.42	
150%	5.0	7.5	12.5	12.435	99.44	99.43 ±0.0750	0.075
	5.0	7.5	12.5	12.439	99.51	±0.0730	

Table 9. Inter-day variability of AMO

Conc.	Pea	lk area (μV/sec)		Mean area	- SD*	DCD*
(µg/mL)	Day 1	Day 2	Day 3	(µV/sec)	± SD	KSD
5	109213	109330	109225	109256	97.22	0.0163
15	341910	342235	342307	342150	138.12	0.0185
25	541892	541982	541822	541898	315.61	0.0145

* indicates avreage of three determination

	Table 10. Inter-day variability of LAIV								
Conc.	Peak area (µV/sec)			Mean area	- SD*	DCD*			
(µg/mL)	Day 1	Day 2	Day 3	(µV/sec)	± SD	KSD			
5	104550	104552	104549	104550	526.86	0.0368			
15	361261	361460	361663	361461	211.00	0.0581			
25	548588	548316	548141	548315	235.24	0.0493			

Table 10. Inter-day variability of PAN

indicates avreage of three determination

INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY

Table 11. Inter-day variability of CLA

Conc.	Pe	eak area (µV/sec	2)	Mean area	\ SD*	DCD*
(µg/mL)	Day 1	Day 2	Day 3	(µV/sec)	± SD	KSD
5	109412	109314	109438	109288	65.39	0.0498
15	332392	332593	332513	332499	101.19	0.0028
25	531792	531992	532093	531959	443.48	0.0130

* indicates avreage of three determination

Table 12. Intra-day variability of AMO									
Conc	Р	eak area (µV/ se	c)	Mean area					
(μg/mL)	Trial 1	Trial 2	Trial 3	(µV/sec)	\pm SD [*]	RSD [*]			
5	109280	109416	109422	109372	126.62	0.0168			
15	341933	341287	341810	341676	58.021	0.0360			
25	541882	541922	541983	541929	97.505	0.0311			

* indicates avreage of three determination

Table 13. Intra-day variability of PAN

Conc.	P	eak area (µV/sec)	Mean area	- SD*	RSD*	
(µg/mL)	Trial 1	Trial 2	Trial 3	(µV/Sec)	± SD		
5	104650	104552	104754	104652	201.01	0.0975	
15	361335	361429	361633	361465	201.53	0.0590	
25	548041	548440	548342	548274	222.92	0.0322	

* indicates avreage of three determination

Table 14. Intra-day variability of CLA

Conc.	Peak area (µV/sec)		Mean area	\pm SD [*]	DSD*				
(µg/mL)	Trial 1	Trial 2	Trial 3	(µV/sec)		KSD			
5	109225	109296	109321	109280	68.80	0.0464			
15	332417	332619	332393	332476	148.96	0.0250			
25	531321	531420	531523	531421	122.00	0.0170			
ala .									

* indicates avreage of three determination

Table 15. Ruggedness data for AMO, PAN and CLA

Donomotor	% Assay			\mathbf{SD}^*			RSD*		
Parameter	AMO	PAN	CLA	AMO	PAN	CLA	AMO	PAN	CLA
Analyst -1st	99.48	98.86	99.53	0.0339	0.5782	0.02657	0.0340	0.584	0.0266
Analyst-2 nd	98.57	98.79	99.45	0.0452	0.0904	0.05169	0.0458	0.0915	0.05197
Lab-1 st	98.74	98.27	99.35	0.0603	0.0701	0.0421	0.0616	0.0713	0.0423
Lab-2 nd	99.15	96.86	99.29	0.0413	0.0628	0.0510	0.0415	0.0648	0.0513
Reagent-1st	99.43	99.59	99.62	0.0405	0.0521	0.0431	0.0407	0.0523	0.0405
Reagent-2 nd	99.57	99.64	99.75	0.0402	0.0903	0.0680	0.0403	0.0682	0.0681

* indicates avreage of three determination

Shantaram G. Khanageet al, The Experiment, 2017., Vol 39(3), 2330-2344

INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY

Iu											
System	Drug	Change in	flow rate (mL/mi	n)	RSD [*]						
suitability parameter [*]	Drug	0.98	1.0	1.02	0.98	1.0	1.02				
	AMO	104046	104870	104799	0.0063	0.0016	0.0014				
Peak area [*]	PAN	104663	104412	104698	0.0143	0.0289	0.0125				
	CLA	107765	106921	107516	0.0012	0.0025	0.0058				
Theoretical	AMO	3043	3136	3192	0.6014	0.3668	0.9172				
plates*	PAN	2517	2522	2561	0.5186	0.3437	0.3477				
	CLA	3361	3379	3361	0.1653	0.2188	0.2857				
Tailing fastan*	AMO	1.409	1.412	1.486	0.4622	0.6679	0.3267				
Taming factor	PAN	1.350	1.336	1.311	0.7414	0.4969	0.3078				
	CLA	1.521	1.565	1.526	0.8570	0.6908	0.5891				
Retention	AMO	1.923	1.926	1.927	0.4941	0.1454	0.1754				
Time [*] (Min)	PAN	3.319	3.326	3.337	0.3060	0.2034	0.2017				
	CLA	2.532	2.517	2.522	0.2155	0.1213	0.1245				

Table 16. Robustness study of system suitability parameter: Change in flow rate (mL/min)

* indicates avreage of three determination

Table 17. Robustness study of system suitability parameter: Change in O.C. of M.P. Ratio

System suitability	Dana	Change in (D.C. of M.P. Rat	io	\mathbf{RSD}^*			
parameter*	Drug	75:25	70:30	65:35	75:25	70:30	65:35	
	AMO	104126	104870	104740	0.0158	0.0061	0.0151	
Peak area [*]	PAN	104321	104314	104654	0.0745	0.0623	0.0360	
	CLA	107869	106965	107515	0.0108	0.0050	0.0034	
Theoretical	AMO	3044	3137	3180	0.4066	0.3823	0.3432	
plates*	PAN	2519	2521	2551	0.2278	0.4308	0.3259	
	CLA	3370	3380	3362	0.1518	0.2773	0.2159	
	AMO	1.405	1.416	1.476	0.2178	0.6078	0.1821	
Tailing factor [*]	PAN	1.349	1.362	1.316	0.5458	0.1832	0.3788	
	CLA	1.550	1.566	1.535	0.2378	0.6671	0.6409	
Retention Time [*] (Min)	AMO	1.943	1.927	1.920	0.1145	0.1245	0.1645	
	PAN	3.336	3.322	3.388	0.2359	0.2219	0.3026	
	CLA	2.526	2.517	2.551	0.1544	0.0728	0.9405	

* indicates avreage of three determination

Table 18. Robustness study of system suitability parameter: Change in pH

System suitability	Davia		Change in pH	[RSD*		
parameter*	Drug	3.8	4.0	4.2	3.8	4.0	4.2
	AMO	1046598	104879	104423	0.0160	0.0132	0.0187
Peak area [*]	PAN	1045571	104423	105565	0.0577	0.0936	0.0573
	CLA	1077344	106794	107415	0.0069	0.0061	0.0572
Theoretical plates*	AMO	3043	3171	3170	0.2329	0.4267	0.3455
i neoretical plates	PAN	2518	2527	2554	0.0780	0.2298	0.1459
	CLA	3360	3376	3356	0.1768	0.1193	0.1186
Tailing factor*	AMO	1.406	1.458	1.468	0.5298	0.5884	0.2763
Taning factor	PAN	1.359	1.326	1.315	0.9410	0.2824	0.4622
	CLA	1.560	1.568	1.540	0.725	0.5766	1.0428
Retention	AMO	1.953	1.972	1.930	0.1459	0.1506	0.0720
Time [*] (Min)	PAN	3.338	3.323	3.348	0.2655	0.2256	0.3409
	CLA	2.537	2.571	2.560	0.1165	0.1821	0.1232

* indicates avreage of three determination

Shantaram G. Khanageet al, The Experiment, 2017., Vol 39(3), 2330-2344

INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY

Table 17: Robustiess study of system suitability parameter: Change in Waveength (init)									
System suitability	Dava		Wavelength (m	m)	\mathbf{RSD}^*				
parameter*	Drug	240	242	244	240	242	244		
	AMO	1047894	1048382	1044527	0.0042	0.0075	0.0189		
Peak area [*]	PAN	1045681	1045249	1054754	0.0803	0.0811	0.0678		
	CLA	1076827	1078497	1075264	0.0167	0.0336	0.0349		
Theoretical	AMO	3045	3180	3150	0.3432	0.1854	0.3216		
plates [*]	PAN	2522	2530	2564	0.2524	0.1277	0.1826		
	CLA	3370	3378	3358	0.1784	0.0830	0.2482		
Tailing factor*	AMO	1.415	1.422	1.436	0.5253	0.3867	0.2385		
Taming factor	PAN	1.361	1.378	1.398	0.1946	0.7695	0.4487		
	CLA	1.540	1.535	1.549	0.1142	0.6385	0.6721		
Retention	AMO	1.968	1.958	1.944	0.1721	0.1701	0.2318		
Time [*] (Min)	PAN	3.358	3.392	3.352	0.3025	0.3016	0.1759		
	CLA	2.536	2.574	2.580	0.1669	0.1143	0.1430		

Table 19. Robustness study of system suitability parameter: Change in Wavelength (nm)

* indicates avreage of three determination

Table 20. Solution stability of AMO, PAN and CLA

Drug	% AssayInitial	After 12 hrs.	After 24 hrs.	After 36 hrs.	After 48 hrs.
AMO	99.28%	99.12%	99.35%	99.64%	98.52%
PAN	99.68%	99.24%	99.77%	99.34%	99.05%
CLA	99.57%	99.07%	99.54%	99.48%	99.19%

6. **REFERENCES**

- 1. Xiaofeng X, Zhenghua, S. Ultrasensitive determination of Amoxicillin using chemiluminescence with flow injection analysis. Spectr, 2006; 20:37-43.
- 2. Chakravarthy KK, Darak V, Arshad MD Bharath SA. Development and validation of simultaneous spectrophotometric estimation of Doxycycline and Tinidazole in tablet dosage forms. Int J Pharm Pharmaceu Sci. 2010; 2(2):534-539.
- 3. Madhura D, Shakuntala S, Snehal D. Analytical method validation and statistical evaluation of spectrophotometric methods for simultaneous estimation of AmoxycillinTrihydrate and Ambroxol Hydrochloride. Asian J BiochemPharmaceu Res. 2011; 2 (1):585-592.
- 4. Kemal U, Lmurat P, Elif K, Feyyaz O. Spectrophotometric determination Amoxicillin in pharmaceutical formulations. PharmaSci. 2008; 5(1):1-16.
- 5. Hesham S, Gamal A. Selective spectrophotometric determination of phenolic β- lactam antibiotics. J Pharmaceu Biomed Anal. 2002; 28(6):1205-1213.
- 6. El Walily AF, Gazy AA, Belal SF, Khamis EF. Selective spectrofluorimetric determination of phenolic beta-lactum antibiotics through the formation of their Coumarin derivatives. J PharmBiomed Anal.1999; 20(4):643-653.
- 7. Jani H. Development and validation of analytical method for simultaneous estimation of AmoxycillinTrihydrate and Probenecid in combined dosage form. J ChemPharmaceu Res. 2014; 6(6):1212-1217.
- 8. Dhoka M, Joshi P. High performance Liquid Chromatographic method for determination of Amoxicillin Trihydrate and Bromhexine Hydrochloride in oral dosage forms. Int J Pharm Pharmaceu Sci. 2010; 2(1):130-133.
- 9. Shanmugasundaram P, Kamal R, Mohanrangan G. Simultaneous estimation of Amoxicillin and Flucloxacillin in its combined capsule dosage form by HPLC. Rasa J Chem. 2009; 2(1):57-60.
- 10. Angela S, Kumar S. A development and Validation of Amoxicillin by RP-HPLC method in tablet formulation. Int J Chem Tech Res. 2011; 3(3):1037-1041.

Shantaram G. Khanageet al, The Experiment, 2017., Vol 39(3), 2330-2344

INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY

- 11. Solanki R, Badri P. Development and validation of simultaneous estimation method for AmoxycillinTrihydrate and Tinidazole in tablet dosage form by RP-HPLC. Asian Pharma Res Art.2013; 4(2):66-71.
- 12. Rajput S, Bhamre P. RP-HPLC method for simultaneous estimation of Ambroxol Hydrochloride, Potassium Clavulanate and Amoxicillin Trihydrate in bulk drugs and laboratory synthetic mixture. J Adv Pharm Edu Res. 2014; 4(2):178-187.
- 13. Jadhav S, Salunkhe V. Development and validation of HPLC method for simultaneous estimation of AmoxycillinTrihydrate and Potassium Clavulanate in Pure and marketed tablet dosage form.Curr Pharm Res.2013; 3(4):994-998.
- 14. Numan A, Majed N. Validation and application of a Reversed-phase HPLC method for the determination of Amoxicillin Trihydrate in human plasma.J App SciRes.2009: 5(12):2219-2224.
- 15. Patel P, Varshney P.Analytical method development and validation for simultaneous estimation of Metronidazole and Amoxicillin in synthetic mixture by UV- visible spectroscopy. Int J Pharm Pharmaceu Sci. 2014; 6(2):317-319.
- 16. Edwin KJ. Goodman and Gilman's The Pharmacological Basis of Therapeutics. Inc., London, McGraw-Hill; 2001.
- 17. Moustafa AA. Spectrophotometric methods for the determination of Lansoprazole and Pantoprazole Sodium Sesquihydrate. J Pharm Biomed Anal. 2000; 22(1):45-58.
- 18. Seema G, Atul S, Yogini J, Sanjay S. A simple and sensitive HPTLC method for quantitative analysis of Pantoprazole Sodium Sesquihydrate in tablets. J Planar Chromatogr. 2006; 19(109):228-232.
- 19. Khanage S, Shinde R, Mohite P, Deshmukh V. Simultaneous estimation of Levosulpiride and Pentoprazole sodium in capsule dosage form by RP-HPLC method. Annals West UniTimis. 2013; 22(3):23-34.
- 20. Siddartha B, Sudheer I. Analytical method development and method validation for the estimation of Pantoprazole in tablet dosage form. Schol Res Lib Pharma Chem. 2013; 5(4):99-104.
- 21. Jagatiya V. Simultaneous Estimation of Cinitapride and Pantoprazole Sodium by RP-HPLC in their marketed formulation. Int J Chem tech Res. 2012; (4):1396-1401.
- 22. Shitole S, Gurjar M. Development and validation of stability indicating RP-HPLC method for simultaneous determination of Pantoprazole and Mosapride Citrate in capsule dosage form. J ChemPharmaceu Res. 2015; 7(2):80-86.
- 23. Mohideen M, Shivakanth P, Kumar S. Development and validation of analytical method for Naproxen and Pantoprazole in capsule dosage form. Pel Res Lib Der Pharm Sin. 2011; 2(6):114-121.
- 24. Sweetman SC. Martindale, The Complete Drug Reference. London, The Pharmaceutical Pres; 2011.
- 25. Rodvold KA. Clinical pharmacokinetics of Clarithromycin. ClinPharmacokinet. 1999; 37:385-398.
- 26. Chey WD, Wong B. American College of Gastroenterology guideline on the management of Helicobacter Pylori infection. Am J Gastroenterol. 2007; 102(8):1808-1825.
- 27. Soichiro K, Bruce K. Mechanisms of Action and clinical application of Macrolides as immunomodulatory medications. ClinMicrobiol Rev. 2010; 23(3):590-615.
- 28. Bakhtiar K, Samaneh K, Kazem N. Simple spectrophotometric method for measuring antibiotics by using Fe(SCN)2+ complex pharmaceutical products. J Der Pharm Fors. 2013; 2(1):103-109.
- 29. Salem H, Safa A. Simultaneous determination of Omeprazole, Tinidazole and Clarithromycin in bulk powder and Helicure tablets by TLC densitometric technique. J Pharm Edu Res. 2013; 4(1):35-39.
- 30. Birch B, Chan C. RP-HPLC Method development and validation for simultaneous estimation of Clarithromycin and Paracetamol. 2001; 14(23):585-595.
- 31. Salem H. Simultaneous determination of Omeprazole, Tinidazole and Clarithromycin in bulk powder and Helicure tablets by HPLC. J ChromatogrSepar Tech. 2014;5(2):221-228.
- 32. Seyed MF. Rapid High Performance Liquid Chromatographic method for determination of Clarithromycin in human plasma using amperometric detection application in pharmacokinetic and bioequivalence studies. Iranian J Pharmaceu Res. 2013; 12;65-69.
- 33. Ghazzawi IM, Obeidat WA, Zuriekat FA. Triple therapy with Pantoprazole, Clarithromycin and Amoxicillin for eradication in patients with Helicobacter Pylori positive duodenal ulcers. Saudi Med J. 2004; 25(8):1006-1009.
- 34. International Conference on Harmonization Guideline on Stability Testing of New Drug Substances and Products(2000)Q1A(R2).

Shantaram G. Khanageet al, The Experiment, 2017., Vol 39(3), 2330-2344

INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY

(http://www.ich.org/fileadmin/PublicWebSite/ICHProducts/Guidelines/Quality/Q1AR2/Step4/Q1AR2Guideline.pdf). Effective February 6, 2003. Accessed January 24, 2016.

35. International Conference on Harmonization Guideline on Validation of Analytical Procedures: Text and Methodology (2005)Q2(R1).

(http://www.ich.org/fileadmin/PublicWebSite/ICHProducts/Guidelines/Quality/Q2R1/Step4/Q2R1Guideline.pdf).Effe ctive November 6, 2005. Accessed January 4, 2016.

Author(s) & Affiliation

Shantaram G. Khanage^{a*}, Popat B. Mohite^a, Sonali V. Toge^a, Vinayak K. Deshmukh^b

^aDepartment of Quality assurance technique and PG studies, M.E.S. College of Pharmacy, Sonai, Tq-Newasa, Dist.-Ahmednagar, Maharashtra, India-414105.

^bDepartment of Pharmaceutical Chemistry and PG studies, M.E.S. College of Pharmacy, Sonai, Tq-Newasa, Dist.-Ahmednagar, Maharashtra, India-414105.