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NONPARAMETRIC CONTROL CHARTS FOR VARIABILITY USING RUNS RULES 

 

ABSTRACT 

 

In this paper, two Shewhart-type nonparametric control charts based on runs rules are developed for monitoring the changes in the 

process variability. The charts are based on two nonparametric tests for equality of variances. The performance of the proposed control 

charts is evaluated for the normal, light tailed and heavy tailed distributions through average run length using simulations.  

 

Keywords Average run length, runs rules, process variability, nonparametric tests.  

 

 1. INTRODUCTION 

 

Control charts are statistical process control tools that are widely used to detect unfavorable changes in a process with respect to some 

quality characteristics. The changes may occur in average as well as in the variability of the relevant quality characteristics. It is, 

therefore, essential to control both of them using by two control charts, one chart for process average and another chart for process 

variability. Most of the control charts that are developed for monitoring process average and process variability are designed and 

evaluated under the assumption that the underlying distribution of the quality characteristic is normal. In real applications, there are many 

situations in which the process data come from a non-normal distribution which need to be monitored by appropriate control charts. To 

monitor such type of data, development of control charts that do not depend on a particular distributional assumption is desirable. 

Nonparametric control charts can serve this purpose. The main advantage of a nonparametric control chart is that it does not assume any 

probability distribution for the characteristic of interest.  A formal definition of nonparametric or distribution-free control chart is given 

in terms of its in-control run length distribution. The number of samples that needs to be collected before the first out-of-control signal 

given by a chart is a random variable called the run-length; the probability distribution of the run-length is referred to as the run-length 

distribution. If the in-control run length distribution is same for every continuous distribution then the chart is called distribution-free or 

nonparametric [1].  

 

In literature, several nonparametric control charts are proposed for monitoring location of a univariate process. Some of these are based 

on sign and/or rank statistics by assuming a known in-control target value for process location. An extensive overview of the literature on 

univariate nonparametric control charts is presented in [2]. A distribution-free Shewhart control chart for monitoring process center based 

on the signed-ranks of grouped observations is developed in [3]. Shewhart, CUSUM and EWMA control charts based on signed-rank-

like statistics of grouped data for monitoring a process center when in-control target center was not specified is proposed in [4] and 

studied the robustness of the charts against outliers. A nonparametric charts based on runs rules of Wilcoxon’s signed-rank statistic is 

developed in [5]. A class of nonparametric Shewhart-type charts based on runs rules of sign statistic is developed in [6]. 

 

However, there are few nonparametric charts in literature to monitor change in process variability. Using non-parametric tests for the 

equality of two variances for use as control statistics in nonparametric control charts for variability is suggested in [7]. Control charts 

using tests statistics for comparing two variances would require obtaining an initial sample (of size m) when the process is considered to 

be in-control. Then at each sample time i, a sample of size n is obtained from the process, and the pooled sample of size (m + n) is 

obtained. The observations in the pooled sample then are ranked from smallest to largest, and some statistic based on the ranks of the 

observations is calculated. A nonparametric control chart for monitoring process variability based on Conver’s squared rank test for 

variance is proposed in [8]. Two nonparametric control charts for monitoring process variability based on two nonparametric tests are 

developed in [9]. A nonparametric control chart for dispersion based on the rank sum statistic is proposed in [10].   



ISSN-2319-2119 

RESEARCH ARTICLE

 

                                 V. B. Ghute
 
et al, The Experiment, 2014, Vol.24 (4)1683-1691 

 

1684 

                                                                www.experimentjournal.com 

 

When the process distribution is normal, Shewhart R and S charts are appropriate control chart for monitoring the process variability. If 

underlying process distribution is non-normal, then the need of development of nonparametric control chart based on appropriate 

nonparametric test arises. In this paper, we introduce two Shewhart-type nonparametric control charts using runs rules for monitoring 

process variability for the case that the location parameter is under control. The proposed nonparametric control charts are based on two 

sample nonparametric tests proposed in [11] and [12]. These are most powerful test statistics for detecting scale shifts. The performance 

of the proposed charts is assessed for both the in-control state and out-of-control state under different underlying distributions.  

 

2. MATERIAL AND METHOD 

2.1. Nonparametric control chart based on Sukhatme test  

 

A nonparametric test for two independent samples dispersion problem is proposed in [11]. Suppose we want to compare two independent 

random samples  )X,...,X,X(X m21=  and  )Y,...,Y,Y(Y n21=  which are drawn from absolute continuous distributions and 

differ only in the scale parameters. Let YX andσσ  be the arbitrary measures of dispersion of X and Y respectively then problem of 

testing of hypothesis is YX0 :H σ=σ  against YX1 :H σ≠σ . The Sukhamte test statistic for testing null hypothesis is defined as,  
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We reject hypothesis if T is too large or too small. The mean and variance of the statistic T is given by, 
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has a standard normal distribution and the test is performed on the basis of tabulated values of the standard normal distribution. 

 

We consider Z as the control chart statistic for the nonparametric control chart for monitoring process variability and the chart is referred 

as NP-S chart. We consider )X,...,X,X(X m21= , as reference sample of size m from an in-control process and that 

)Y,...,Y,Y(Y n21= be an arbitrary test sample of size n. The sample statistics Z computed from independent observations from the 

process are plotted against an upper control limit UCL = 3 and LCL = -3. The process is considered out-of-control when a plotted point 

lies above UCL or below LCL. 

 

2.2. Nonparametric control chart based on Mood test 

 

A nonparametric test for equality of variances is developed in [12]. Suppose we have two independent random samples
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)X,...,X,X(X m21= and )Y,...,Y,Y(Y n21= . We wish to test YX0 :H σ=σ  against YX1 :H σ≠σ . Let 

m21 R....RR <<< be the combined samples ranks of the X-values in increasing order of magnitude. The Mood test statistic for 

testing null hypothesis is defined as,                                                                        

                           (3)        

 

 

The mean and variance of the statistic M is given as 
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For N greater than or equal to 30, we may consider the normalized random variable W 
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and perform the test on the basis of tabulated values of the standard normal distribution. 

 

For N less than 30, it is not advisable to use directly the normal approximation. In that case, Laubscher recommended the use of a 

correction for continuity yielding the following test statistic:       
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and perform the test again based on the tabulated values of the standard normal distribution. 

 

We consider W as the control chart statistic for the nonparametric control chart for monitoring process variability and the chart is referred 

as NP-M chart. We consider )X,...,X,X(X m21= , as reference sample of size m from an in-control process and that 

)Y,...,Y,Y(Y n21=
 
be an arbitrary test sample of size n. The sample statistics W computed from independent observations from 

the process are plotted against an upper control limit UCL = 3 and LCL = -3. The process is considered out-of-control when a plotted 

point lies above UCL or below LCL. 

 

2.3. Nonparametric charts with runs rules 

 

In this section, we study the performance of the proposed NP-S and NP-M control charts using runs rules. A Shewhart-type 

nonparametric control chart based on Wilcoxon’s signed-rank statistic and the following run types rules is developed in [5]. Note that we 

would usually use only one of these rules at a time. Each rule would have different control limits. 

 

The process is declared to be out of control when: 

a) single point plots outside the control limit  (one-of-one rule); or 

b) k consecutive points plot outside the control limit (k-of-k rule); or 

c) k of the last w points plot outside the control limits (k-of-w rule). 

 

In order to study the performance of NP-S and NP-M charts we consider rule (a) and (b) of [5].  The ARL performance of NP-S and NP-
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M charts with runs rules is investigated for k = 2 using a simulation study. The one-of-one chart signals an out-of-control status if a point 

falls either above upper control limit or below a lower control limit. The one-of-one chart is Shewhart-type control chart. The two-of-two 

chart signals an out-of-control status if two consecutive points fall either above an upper control limit or below lower control limit.  

 

3. RESULTS AND DISCUSSION 

     

To examine the ability of proposed NP-S and NP-M charts to detect variability shift in a process, we consider underlying process 

distributions as normal, double exponential and uniform with mean zero and variance one. The uniform distribution is considered as 

process distribution to see the effect of a light tailed distribution and double exponential distribution is considered to see the effect of 

heavy tailed distribution on the performance of proposed nonparametric control charts. Consider a process where quality characteristic of 

interest X is distributed with mean µ  and standard deviationσ . Let 0µ  and 0σ be the in-control values of µ  and σ  respectively. When 

a shift in process standard deviation occurs, we have change from the in-control value 0σ  to the out-of-control value 

)1δ0(σδσ 01 ≠<= . Therefore, when control chart for variability is employed, the process shifts are measured through 

0

1

σ

σ
=δ .    

When 1δ = , the process is considered to be in-control . For 1δ >  an increase in σ occurs and for 1<δ , decrease in σ  occurs. In the 

present study only increase in process variability is considered. Computer programs written in C language are used to study the 

performance of the proposed control charts. The in-control and out-of-control ARL values of the proposed control charts are computed 

using 10000 simulations for sample size of n = 10, 15, 20 and 25.   

 

Table 1 to Table 4 provide the ARL values of the proposed NP-S chart with one-of-one and two-of-two rules when the underlying 

process data actually follows normal, double exponential and uniform distributions with sample sizes n =10, 15, 20 and 25 respectively. 

Table 5 to Table 8 provide the ARL values of the proposed NP-M chart with one-of-one and two-of-two rules when the underlying 

process data actually follows normal, double exponential and uniform distributions with sample sizes n =10, 15, 20 and 25 respectively.  

 

Examinations of Table 1 to Table 8 lead to the following findings: 

 

• In-control ARL values of the proposed NP-S and NP-M control charts with one-of-one rule are almost identical under different process 

distributions.  

• In-control ARL values of the proposed NP-S and NP-M control charts with two-of-two rule are almost identical under different process 

distributions.  

• Out-of-control ARL values of NP-S and NP-M charts with two-of-two rule are smaller than that of one-of-one rule for each process 

distribution. Therefore, the charts with two-of-two rule detect shift in process variability earlier than one-of-one rule.  

• Out-of-control ARL values of NP-M chart with one-of-one and two-of-two rules are smaller than the corresponding ARL values of the 

NP-S chart.  NP-M chart is more efficient than NP-S chart for normal, light tailed uniform and heavy tailed double exponential 

distributions. 

• For normally distributed data, both NP-S and NP-M charts performs better than double exponential data. 

• For uniformly distributed data, both NP-S and NP-M charts perform better than normally and doubly exponential data. 
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• Performance of the proposed charts also depends on sample size. For increase in sample size indicates the improvement in the ability to 

detect shift in process variability.                  

 4. CONCLUSION 

 

In this paper, two nonparametric control charts based on runs rules are developed for monitoring process variability. The performance of 

the proposed control charts is studied by simulation under normal, light tailed and heavy tailed distributions. It indicates that performance 

of the proposed charts is improved when runs rules are used. Our simulation study indicates that the NP-M control chart is more efficient 

than NP-S control chart for detecting shifts in process variability for different process distributions. Both NP-M and NP-S control charts 

perform better when underlying process distribution is light tailed. 
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Shift 

 δ  

One-of-one rule Two-of-two rule 

Normal Double 

Exponential 

Uniform Normal Double 

Exponential 

Uniform 

1.0 481.53 474.32 478.78 520.12 528.11 525.76 

1.2 217.34 260.98 162.64 232.38 292.22 143.12 

1.4 156.23 155.24 72.45 92.91 144.58 45.03 

1.6 70.12 100.61 40.37 44.66 77.28 20.55 

1.8 46.28 71.44 26.78 25.43 45.48 12.52 

2.0 33.24 57.82 19.39 16.37 30.29 8.68 

2.2 25.03 41.67 14.68 11.77 21.54 6.81 

2.4 20.01 33.49 11.78 8.90 16.17 5.51 

2.6 16.31 27.55 9.87 7.33 12.87 4.70 

2.8 13.67 23.50 8.43 6.14 10.44 4.26 

3.0 11.96 20.03 7.45 5.34 8.88 3.87 

4.0 6.90 11.40 4.65 3.58 5.18 2.96 

5.0 4.92 7.78 3.67 2.96 3.84 2.62 

Table-1: ARL values of NP-S chart when n = 10 

 

 

Shift 

δ  

One-of-one rule Two-of-two rule 

Normal Double 

Exponential 

Uniform Normal Double 

Exponential 

Uniform 

1.0 448.66 451.61 454.26 554.12 556.26 557.30 

1.2 168.67 211.34 105.46 203.75 227.08 106.57 

1.4 69.17 104.24 35.19 61.69 106.37 25.82 

1.6 34.42 56.67 16.38 24.89 47.89 11.02 

1.8 19.53 35.16 9.59 13.47 26.13 6.65 

2.0 12.66 23.62 6.36 8.37 16.32 4.78 

2.2 8.86 16.76 4.69 6.11 11.22 3.89 

2.4 6.68 12.53 3.78 4.84 8.50 3.26 

2.6 5.22 9.95 3.15 4.08 6.71 2.92 

2.8 4.48 8.00 2.70 3.49 5.56 2.75 

3.0 3.69 6.59 2.43 3.19 4.79 2.59 

4.0 2.17 3.49 1.66 2.44 3.07 2.24 

5.0 1.68 2.41 1.40 2.24 2.54 2.12 

 

Table-2: ARL values of NP-S chart when n = 15 
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Shift 

δ  

One-of-one rule Two-of-two rule 

Normal Double 

Exponential 

Uniform Normal Double 

Exponential 

Uniform 

1.0 543.07 545.49 537.98 503.71 507.03 506.82 

1.2 161.15 220.82 93.30 153.95 224.31 72.02 

1.4 54.46 89.86 24.05 38.86 72.17 15.34 

1.6 22.95 43.65 10.06 14.72 29.94 6.75 

1.8 12.48 24.46 5.72 7.95 15.61 4.28 

2.0 7.60 14.95 3.81 5.29 9.72 3.30 

2.2 5.13 10.38 2.80 3.99 6.77 2.81 

2.4 3.86 7.49 2.27 3.32 5.19 2.50 

2.6 3.06 5.77 1.93 2.88 4.26 2.36 

2.8 2.56 4.59 1.73 2.64 3.65 2.25 

3.0 2.19 3.82 1.56 2.44 3.24 2.18 

4.0 1.43 2.09 1.22 2.12 2.39 2.05 

5.0 1.22 1.55 1.11 2.05 2.16 2.03 

Table-3: ARL values of NP-S chart when n = 20 

 

Shift 

δ  

One-of-one rule Two-of-two rule 

Normal Double 

Exponential 

Uniform Normal Double 

Exponential 

Uniform 

1.0 513.33 503.57 523.46 516.60 514.31 510.23 

1.2 132.85 188.11 68.51 119.92 186.98 50.86 

1.4 38.12 66.96 15.02 26.53 51.41 10.23 

1.6 23.39 29.72 6.21 9.88 20.02 4.75 

1.8 12.43 15.55 3.48 5.46 10.31 3.26 

2.0 7.42 9.32 2.45 3.84 6.62 2.66 

2.2 5.23 6.47 1.88 3.06 4.79 2.35 

2.4 3.91 4.65 1.58 2.63 3.84 2.21 

2.6 3.06 3.56 1.42 2.41 3.22 2.13 

2.8 2.55 2.92 1.31 2.27 2.87 2.09 

3.0 2.16 2.45 1.23 2.19 2.61 2.06 

4.0 1.44 1.48 1.07 2.04 2.14 2.01 

5.0 1.21 1.20 1.02 2.01 2.04 2.00 

 

Table-4: ARL values of NP-S chart when n = 25 
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Shift 

 δ  

One-of-one rule Two-of-two rule 

Normal Double 

Exponential 

Uniform Normal Double 

Exponential 

Uniform 

1.0 328.93 332.94 335.48 251.17 253.42 255.79 

1.2 135.24 174.71 85.03 105.55 136.49 54.28 

1.4 62.06 92.96 30.26 42.36 67.19 17.30 

1.6 33.09 54.86 14.83 20.37 37.02 8.98 

1.8 20.13 36.10 9.16 12.53 23.24 6.07 

2.0 13.66 24.69 6.43 8.57 15.74 4.58 

2.2 9.91 18.15     5.01 6.46 11.85 3.91 

2.4 6.82 12.63 3.71 5.28 9.23 3.47 

2.6 6.13 11.67 3.44 4.55 7.62 3.20 

2.8 5.13 9.51 2.99 4.02 6.41 3.01 

3.0 4.39 7.96 2.69 3.65 5.60 2.87 

4.0 2.71 4.45 1.95 2.84 3.74 2.49 

5.0 2.10 3.16 1.67 2.54 3.04 2.38 

Table-5: ARL values of NP-M chart when n = 10 

 

Shift 

δ  
One-of-one rule Two-of-two rule 

Normal Double 

Exponential 

Uniform Normal Double 

Exponential 

Uniform 

1.0 420.16 415.82 411.57 388.93 389.19 389.00 

1.2 137.21 184.70 66.75 118.52 171.04 45.97 

1.4 46.02 78.83 17.62 33.16 63.47 11.07 

1.6 20.50 39.69 7.49 14.13 28.34 5.47 

1.8 11.25 23.02 4.53 7.77 15.77 3.76 

2.0 7.10 14.85 3.19 5.28 10.12 3.06 

2.2 5.00 10.45 2.44 4.07 7.37 2.66 

2.4 3.59 6.75 1.91 3.37 5.69 2.46 

2.6 3.05 5.95 1.80 2.97 4.67 2.34 

2.8 2.59 4.83 1.64 2.71 4.05 2.25 

3.0 2.23 4.05 1.53 2.53 3.54 2.20 

4.0 1.49 2.26 1.23 2.19 2.58 2.08 

5.0 1.28 1.71 1.16 2.10 2.29 2.05 

 

Table-6: ARL values of NP-M chart when n = 15 

 

Shift 

δ  

One-of-one rule Two-of-two rule 

Normal Double 

Exponential 

Uniform Normal Double 

Exponential 

Uniform 

1.0 418.01 414.41 416.31 438.46 435.84 441.62 
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1.2 109.29 166.97 45.11 99.98 160.75 32.42 

1.4 31.19 58.02 10.23 22.69 48.39 7.43 

1.6 12.73 26.67 4.42 9.13 19.82 3.92 

1.8 6.61 14.51 2.65 3.75 10.56 2.85 

2.0 4.09 8.92 1.95 3.70 6.73 2.44 

2.2    2.93 6.11 1.58 3.0 4.94 2.25 

2.4 2.28 4.50 1.42 2.59 3.95 2.15 

2.6 1.87 3.46 1.28 2.37 3.34 2.09 

2.8 1.66 2.87 1.20 2.25 2.94 2.06 

3.0 1.47 2.44 1.16 2.18 2.71 2.05 

4.0 1.15 1.51 1.05 2.04 2.18 2.01 

5.0 1.07 1.24 1.03 2.01 2.07 2.01 

Table-7: ARL values of NP-M chart when n = 20 

 

Shift 

δ  

One-of-one rule Two-of-two rule 

Normal Double 

Exponential 

Uniform Normal Double 

Exponential 

Uniform 

1.0 418.44 424.64 426.27 468.41 463.56 460.16 

1.2 90.68 139.41 33.15 82.20 141.43 23.47 

1.4 22.46 44.64 6.83 16.71 36.17 5.43 

1.6 8.39 19.05 2.96 6.70 14.28 3.05 

1.8 4.42 9.86 1.88 3.92 7.68 2.41 

2.0 2.83 5.81 1.46 2.95 5.05 2.18 

2.2 2.05 4.10 1.27 2.50 3.74 2.09 

2.4 1.65 3.05 1.16 2.28 3.08 2.05 

2.6 1.44 2.41 1.11 2.15 2.71 2.03 

2.8 1.29 2.02 1.07 2.10 2.48 2.02 

3.0 1.20 1.76 1.05 2.06 2.33 2.01 

4.0 1.04 1.21 1.01 2.01 2.06 2.00 

5.0 1.02 1.08 1.00 2.00 2.02 2.00 

Table-8: ARL values of NP-M chart when n = 25 
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